CZ16_1_2000m_Temp_year
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/CZ16_1_2000m_Temp_year.yaml")
ds=cat.netcdf.read()
Metadata
title | CZ16_1_2000m_Temp_year |
location | /project/atlantic_var/OBS/OHC_Cheng/OHC_Cheng/DATA |
tags | PLACEHOLDER |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/CZ16_1_2000m_Temp_year.yaml |
last updated | 2017-08-26 |
Dataset Contents
<xarray.Dataset> Dimensions: (depth_std: 41, lat: 180, lon: 360, time: 927) Coordinates: * lat (lat) float32 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5 * lon (lon) float32 1.0 2.0 3.0 4.0 5.0 ... 357.0 358.0 359.0 360.0 * depth_std (depth_std) float32 1.0 5.0 10.0 20.0 ... 1700.0 1800.0 2000.0 Dimensions without coordinates: time Data variables: temp (time, lat, lon, depth_std) float32 dask.array<chunksize=(1, 180, 360, 41), meta=np.ndarray> Attributes: Title: IAP 3-Dimentional Subsurface Temperature Dataset Using O... StartYear: 1940 StartMonth: 1 StartDay: 1 EndYear: 1940 EndMonth: 1 EndDay: 30 Period: 1 GridProjection: Mercator, gridded GridPoints: 360x180 Creator: Lijing Cheng From IAP,CAS,P.R.China Reference: Cheng and Zhu 2016. Journal of Climate; Cheng et al. 201...
xarray.Dataset
- depth_std: 41
- lat: 180
- lon: 360
- time: 927
- lat(lat)float32-89.5 -88.5 -87.5 ... 88.5 89.5
- long_name :
- latitude
- units :
- degree_north
- standard_name :
- latitude
array([-89.5, -88.5, -87.5, -86.5, -85.5, -84.5, -83.5, -82.5, -81.5, -80.5, -79.5, -78.5, -77.5, -76.5, -75.5, -74.5, -73.5, -72.5, -71.5, -70.5, -69.5, -68.5, -67.5, -66.5, -65.5, -64.5, -63.5, -62.5, -61.5, -60.5, -59.5, -58.5, -57.5, -56.5, -55.5, -54.5, -53.5, -52.5, -51.5, -50.5, -49.5, -48.5, -47.5, -46.5, -45.5, -44.5, -43.5, -42.5, -41.5, -40.5, -39.5, -38.5, -37.5, -36.5, -35.5, -34.5, -33.5, -32.5, -31.5, -30.5, -29.5, -28.5, -27.5, -26.5, -25.5, -24.5, -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5], dtype=float32)
- lon(lon)float321.0 2.0 3.0 ... 358.0 359.0 360.0
- long_name :
- longitude
- units :
- degree_east
- standard_name :
- longitude
array([ 1., 2., 3., ..., 358., 359., 360.], dtype=float32)
- depth_std(depth_std)float321.0 5.0 10.0 ... 1800.0 2000.0
- long_name :
- standard depth
- units :
- m
- standard_name :
- depth_std
array([1.0e+00, 5.0e+00, 1.0e+01, 2.0e+01, 3.0e+01, 4.0e+01, 5.0e+01, 6.0e+01, 7.0e+01, 8.0e+01, 9.0e+01, 1.0e+02, 1.2e+02, 1.4e+02, 1.6e+02, 1.8e+02, 2.0e+02, 2.5e+02, 3.0e+02, 3.5e+02, 4.0e+02, 4.5e+02, 5.0e+02, 5.5e+02, 6.0e+02, 6.5e+02, 7.0e+02, 7.5e+02, 8.0e+02, 8.5e+02, 9.0e+02, 1.0e+03, 1.1e+03, 1.2e+03, 1.3e+03, 1.4e+03, 1.5e+03, 1.6e+03, 1.7e+03, 1.8e+03, 2.0e+03], dtype=float32)
- temp(time, lat, lon, depth_std)float32dask.array<chunksize=(1, 180, 360, 41), meta=np.ndarray>
- long_name :
- temperature
- units :
- centigrade
- standard_name :
- Temperature
Array Chunk Bytes 9.85 GB 10.63 MB Shape (927, 180, 360, 41) (1, 180, 360, 41) Count 3708 Tasks 927 Chunks Type float32 numpy.ndarray
- Title :
- IAP 3-Dimentional Subsurface Temperature Dataset Using Objective Analysis
- StartYear :
- 1940
- StartMonth :
- 1
- StartDay :
- 1
- EndYear :
- 1940
- EndMonth :
- 1
- EndDay :
- 30
- Period :
- 1
- GridProjection :
- Mercator, gridded
- GridPoints :
- 360x180
- Creator :
- Lijing Cheng From IAP,CAS,P.R.China
- Reference :
- Cheng and Zhu 2016. Journal of Climate; Cheng et al. 2017. Science Advances