ESA CCI Surface Soil Moisture merged ACTIVE Product
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/2016_ESACCI-SOILMOISTURE-L3S-SSMS-ACTIVE.yaml")
ds=cat.netcdf.read()Metadata
| title | ESA CCI Surface Soil Moisture merged ACTIVE Product | 
| location | /shared/land/CCI/daily_files/ACTIVE/2016 | 
| tags | global,satellite,daily | 
| catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/2016_ESACCI-SOILMOISTURE-L3S-SSMS-ACTIVE.yaml | 
| last updated | 2021-09-02 | 
Dataset Contents
<xarray.Dataset>
Dimensions:         (lat: 720, lon: 1440, time: 366)
Coordinates:
  * lat             (lat) float64 89.88 89.62 89.38 ... -89.38 -89.62 -89.88
  * time            (time) int64 16801 16802 16803 16804 ... 17164 17165 17166
  * lon             (lon) float64 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9
Data variables:
    sm              (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    sm_uncertainty  (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    flag            (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    freqbandID      (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    dnflag          (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    mode            (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    sensor          (time, lat, lon) float32 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
    t0              (time, lat, lon) float64 dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
Attributes:
    title:                        ESA CCI Surface Soil Moisture merged ACTIVE...
    institution:                  Technical University of Vienna (AUT); Vande...
    contact:                      cci_sm_contact@eodc.eu
    source:                       WARP 5.5R1.1/AMI-WS/ERS12 Level 2 Soil Mois...
    platform:                     ERS-1, ERS-2, METOP-A, METOP-B
    sensor:                       AMI-WS, ASCAT-A, ASCAT-B
    references:                   http://www.esa-soilmoisture-cci.org; Dorigo...
    product_version:              v06.1
    id:                           ESACCI-SOILMOISTURE-L3S-SSMS-ACTIVE-2016021...
    tracking_id:                  59ecd00a-b02b-491c-9a8d-65d1013e86fb
    Conventions:                  CF-1.7
    standard_name_vocabulary:     NetCDF Climate and Forecast (CF) Metadata C...
    summary:                      This dataset was produced with funding of t...
    keywords:                     Soil Moisture/Water Content
    naming_authority:             TU Wien
    keywords_vocabulary:          NASA Global Change Master Directory (GCMD) ...
    cdm_data_type:                Grid
    comment:                      This dataset was produced with funding of t...
    history:                      2021-02-16 00:03:28 - product produced
    date_created:                 20210216T000328Z
    creator_name:                 Department of Geodesy and Geoinformation, T...
    creator_url:                  https://climers.geo.tuwien.ac.at/
    creator_email:                cci_sm_developer@eodc.eu
    project:                      Climate Change Initiative - European Space ...
    license:                      Data use is free and open for all registere...
    time_coverage_start:          20160101T000000Z
    time_coverage_end:            20160101T235959Z
    time_coverage_duration:       P29Y
    time_coverage_resolution:     P1D
    geospatial_lat_min:           -90.0
    geospatial_lat_max:           90.0
    geospatial_lon_min:           -180.0
    geospatial_lon_max:           180.0
    geospatial_vertical_min:      0.0
    geospatial_vertical_max:      0.0
    geospatial_lat_units:         degrees_north
    geospatial_lon_units:         degrees_east
    geospatial_lat_resolution:    0.25 degree
    geospatial_lon_resolution:    0.25 degree
    spatial_resolution:           25km
    time_coverage_start_product:  19910805T000000Z
    time_coverage_end_product:    20201231T235959Zxarray.Dataset
- lat: 720
- lon: 1440
- time: 366
 
- lat(lat)float6489.88 89.62 89.38 ... -89.62 -89.88- standard_name :
- latitude
- units :
- degrees_north
- valid_range :
- [-90. 90.]
- _CoordinateAxisType :
- Lat
 array([ 89.875, 89.625, 89.375, ..., -89.375, -89.625, -89.875]) 
- time(time)int6416801 16802 16803 ... 17165 17166- standard_name :
- time
- units :
- days since 1970-01-01T00:00:00+00:00
- calendar :
- standard
 array([16801, 16802, 16803, ..., 17164, 17165, 17166]) 
- lon(lon)float64-179.9 -179.6 ... 179.6 179.9- standard_name :
- longitude
- units :
- degrees_east
- valid_range :
- [-180. 180.]
- _CoordinateAxisType :
- Lon
 array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875]) 
 
- sm(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- float32
- units :
- percent
- valid_range :
- [ 0. 100.]
- long_name :
- Percent of Saturation Soil Moisture
- _CoordinateAxes :
- time lat lon
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- sm_uncertainty(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- float32
- units :
- percent
- valid_range :
- [ 0. 100.]
- long_name :
- Percent of Saturation Soil Moisture Uncertainty
- _CoordinateAxes :
- time lat lon
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- flag(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- int8
- long_name :
- Flag
- _CoordinateAxes :
- time lat lon
- flag_values :
- [ 0 1 4 5 127]
- flag_meanings :
- ['no_data_inconsistency_detected', 'snow_coverage_or_temperature_below_zero', 'others_no_convergence_in_the_model_thus_no_valid_sm_estimates', 'combination_of_flag_values_1_and_4', 'combination_of_flag_values_1_and_2_and_4_and_8_and_16_and_32_and_64']
- bits :
- [0 1 2 3 4 5 6 7]
- bit_meanings :
- ['no_data_inconsistency_detected', 'snow_coverage_or_temperature_below_zero', 'dense_vegetation', 'others_no_convergence_in_the_model_thus_no_valid_sm_estimates', 'soil_moisture_value_exceeds_physical_boundary', 'weight_of_measurement_below_threshold', 'all_datasets_deemed_unreliable', 'NaN']
- valid_range :
- [ 0 127]
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- freqbandID(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- int16
- long_name :
- Frequency Band Identification
- _CoordinateAxes :
- time lat lon
- flag_values :
- [0 2]
- flag_meanings :
- ['NaN', 'C53']
- valid_range :
- [ 0 511]
- bits :
- [0 1 2 3 4 5 6 7 8 9]
- bit_meanings :
- ['NaN', 'L14', 'C53', 'C66', 'C68', 'C69', 'C73', 'X107', 'K194', 'MODEL']
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- dnflag(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- int8
- long_name :
- Day / Night Flag
- _CoordinateAxes :
- time lat lon
- flag_values :
- [0 1 2 3]
- flag_meanings :
- ['NaN', 'day', 'night', 'day_night_combination']
- bits :
- [0 1 2]
- bit_meanings :
- ['NaN', 'day', 'night']
- valid_range :
- [0 3]
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- mode(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- int8
- long_name :
- Satellite Mode
- _CoordinateAxes :
- time lat lon
- flag_values :
- [0 1 2 3]
- flag_meanings :
- ['NaN', 'ascending', 'descending', 'ascending_descending_combination']
- bits :
- [0 1 2]
- bit_meanings :
- ['NaN', 'ascending', 'descending']
- valid_range :
- [0 3]
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- sensor(time, lat, lon)float32dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- int16
- long_name :
- Sensor
- _CoordinateAxes :
- time lat lon
- flag_values :
- [ 0 256 512 768]
- flag_meanings :
- ['NaN', 'ASCATA', 'ASCATB', 'ASCATA+ASCATB']
- valid_range :
- [ 0 16383]
- bits :
- [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
- bit_meanings :
- ['NaN', 'SMMR', 'SSMI', 'TMI', 'AMSRE', 'WindSat', 'AMSR2', 'SMOS', 'AMIWS', 'ASCATA', 'ASCATB', 'SMAP', 'MODEL', 'GPM', 'FY3B']
 Array Chunk Bytes 1.52 GB 4.15 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float32 numpy.ndarray 
- t0(time, lat, lon)float64dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>- dtype :
- float64
- long_name :
- Observation Timestamp
- _CoordinateAxes :
- time lat lon
- valid_range :
- [16800. 16802.]
- units :
- days since 1970-01-01T00:00:00+00:00
- calendar :
- proleptic_gregorian
 Array Chunk Bytes 3.04 GB 8.29 MB Shape (366, 720, 1440) (1, 720, 1440) Count 1098 Tasks 366 Chunks Type float64 numpy.ndarray 
 
- title :
- ESA CCI Surface Soil Moisture merged ACTIVE Product
- institution :
- Technical University of Vienna (AUT); VanderSat B.V. Noordwijk (NL)
- contact :
- cci_sm_contact@eodc.eu
- source :
- WARP 5.5R1.1/AMI-WS/ERS12 Level 2 Soil Moisture; WARP 5.4R1.0/AMI-WS/ERS2 Level 2 Soil Moisture; EXPERIMENTAL: Metop ASCAT Surface Soil Moisture Climate Data Record 12.5 km sampling; EXPERIMENTAL: Metop ASCAT Surface Soil Moisture Climate Data Record 12.5 km sampling;
- platform :
- ERS-1, ERS-2, METOP-A, METOP-B
- sensor :
- AMI-WS, ASCAT-A, ASCAT-B
- references :
- http://www.esa-soilmoisture-cci.org; Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017) ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001; Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019) Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739, https://doi.org/10.5194/essd-11-717-2019; Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. https://doi.org/10.1109/TGRS.2017.2734070
- product_version :
- v06.1
- id :
- ESACCI-SOILMOISTURE-L3S-SSMS-ACTIVE-20160214000000-fv06.1.nc
- tracking_id :
- 59ecd00a-b02b-491c-9a8d-65d1013e86fb
- Conventions :
- CF-1.7
- standard_name_vocabulary :
- NetCDF Climate and Forecast (CF) Metadata Convention
- summary :
- This dataset was produced with funding of the ESA CCI+ Soil Moisture project; ESRIN Contract No: 4000126684/19/I-NB
- keywords :
- Soil Moisture/Water Content
- naming_authority :
- TU Wien
- keywords_vocabulary :
- NASA Global Change Master Directory (GCMD) Science Keywords
- cdm_data_type :
- Grid
- comment :
- This dataset was produced with funding of the ESA CCI+ Soil Moisture project; ESRIN Contract No: 4000126684/19/I-NB
- history :
- 2021-02-16 00:03:28 - product produced
- date_created :
- 20210216T000328Z
- creator_name :
- Department of Geodesy and Geoinformation, Technical University of Vienna
- creator_url :
- https://climers.geo.tuwien.ac.at/
- creator_email :
- cci_sm_developer@eodc.eu
- project :
- Climate Change Initiative - European Space Agency
- license :
- Data use is free and open for all registered users.
- time_coverage_start :
- 20160101T000000Z
- time_coverage_end :
- 20160101T235959Z
- time_coverage_duration :
- P29Y
- time_coverage_resolution :
- P1D
- geospatial_lat_min :
- -90.0
- geospatial_lat_max :
- 90.0
- geospatial_lon_min :
- -180.0
- geospatial_lon_max :
- 180.0
- geospatial_vertical_min :
- 0.0
- geospatial_vertical_max :
- 0.0
- geospatial_lat_units :
- degrees_north
- geospatial_lon_units :
- degrees_east
- geospatial_lat_resolution :
- 0.25 degree
- geospatial_lon_resolution :
- 0.25 degree
- spatial_resolution :
- 25km
- time_coverage_start_product :
- 19910805T000000Z
- time_coverage_end_product :
- 20201231T235959Z
 
