inmcm4 model output prepared for CMIP5 abrupt 4XCO2
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/cl_Amon_inmcm4_abrupt4xCO2_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | inmcm4 model output prepared for CMIP5 abrupt 4XCO2 |
location | /shared/cmip5/data/abrupt4xCO2/atmos/mon/Amon/cl/INM.inmcm4/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/cl_Amon_inmcm4_abrupt4xCO2_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 120, lev: 21, lon: 180, time: 1800) Coordinates: * time (time) float64 15.5 45.0 74.5 ... 5.467e+04 5.47e+04 5.473e+04 * lev (lev) float64 0.993 0.975 0.95 0.91 ... 0.041 0.0256 0.016 0.01 * lat (lat) float64 -89.25 -87.75 -86.25 -84.75 ... 86.25 87.75 89.25 * lon (lon) float64 0.0 2.0 4.0 6.0 8.0 ... 352.0 354.0 356.0 358.0 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> p0 (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 a (time, lev) float64 dask.array<chunksize=(120, 21), meta=np.ndarray> b (time, lev) float64 dask.array<chunksize=(120, 21), meta=np.ndarray> ps (time, lat, lon) float32 dask.array<chunksize=(120, 120, 180), meta=np.ndarray> a_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> b_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(120, 120, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(120, 180, 2), meta=np.ndarray> cl (time, lev, lat, lon) float32 dask.array<chunksize=(120, 21, 120, 180), meta=np.ndarray> Attributes: institution: INM (Institute for Numerical Mathematics, Moscow... institute_id: INM experiment_id: abrupt4xCO2 source: inmcm4 (2009) model_id: inmcm4 forcing: N/A parent_experiment_id: piControl branch_time: 87600.0 contact: Evgeny Volodin, volodin@inm.ras.ru,INM RAS, Gubki... history: Output from /data5/volodin/4CO2B 2010-06-23T13:05... comment: no comments references: Volodin, Diansky, Gusev 2010. Climate model INMCM... initialization_method: 1 physics_version: 1 tracking_id: f3992b10-91cb-43fd-8f9d-72176e1b5f44 product: output experiment: abrupt 4XCO2 frequency: mon creation_date: 2010-06-23T13:05:01Z Conventions: CF-1.4 project_id: CMIP5 table_id: Table Amon (12 May 2010) 12e195f2fdc87c907b38b38e... title: inmcm4 model output prepared for CMIP5 abrupt 4XCO2 parent_experiment: pre-industrial control modeling_realm: atmos realization: 1 cmor_version: 2.0.0
xarray.Dataset
- bnds: 2
- lat: 120
- lev: 21
- lon: 180
- time: 1800
- time(time)float6415.5 45.0 ... 5.47e+04 5.473e+04
- bounds :
- time_bnds
- units :
- days since 2090-1-1
- calendar :
- 365_day
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([1.55000e+01, 4.50000e+01, 7.45000e+01, ..., 5.46735e+04, 5.47040e+04, 5.47345e+04])
- lev(lev)float640.993 0.975 0.95 ... 0.016 0.01
- bounds :
- lev_bnds
- units :
- 1
- axis :
- Z
- positive :
- down
- long_name :
- hybrid sigma pressure coordinate
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula :
- p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)
- formula_terms :
- p0: p0 a: a b: b ps: ps
array([0.993 , 0.975 , 0.95 , 0.91 , 0.85 , 0.78 , 0.7 , 0.62 , 0.54 , 0.46 , 0.38 , 0.3 , 0.23 , 0.17 , 0.12 , 0.09 , 0.065 , 0.041 , 0.0256, 0.016 , 0.01 ])
- lat(lat)float64-89.25 -87.75 ... 87.75 89.25
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-89.25, -87.75, -86.25, -84.75, -83.25, -81.75, -80.25, -78.75, -77.25, -75.75, -74.25, -72.75, -71.25, -69.75, -68.25, -66.75, -65.25, -63.75, -62.25, -60.75, -59.25, -57.75, -56.25, -54.75, -53.25, -51.75, -50.25, -48.75, -47.25, -45.75, -44.25, -42.75, -41.25, -39.75, -38.25, -36.75, -35.25, -33.75, -32.25, -30.75, -29.25, -27.75, -26.25, -24.75, -23.25, -21.75, -20.25, -18.75, -17.25, -15.75, -14.25, -12.75, -11.25, -9.75, -8.25, -6.75, -5.25, -3.75, -2.25, -0.75, 0.75, 2.25, 3.75, 5.25, 6.75, 8.25, 9.75, 11.25, 12.75, 14.25, 15.75, 17.25, 18.75, 20.25, 21.75, 23.25, 24.75, 26.25, 27.75, 29.25, 30.75, 32.25, 33.75, 35.25, 36.75, 38.25, 39.75, 41.25, 42.75, 44.25, 45.75, 47.25, 48.75, 50.25, 51.75, 53.25, 54.75, 56.25, 57.75, 59.25, 60.75, 62.25, 63.75, 65.25, 66.75, 68.25, 69.75, 71.25, 72.75, 74.25, 75.75, 77.25, 78.75, 80.25, 81.75, 83.25, 84.75, 86.25, 87.75, 89.25])
- lon(lon)float640.0 2.0 4.0 ... 354.0 356.0 358.0
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([ 0., 2., 4., 6., 8., 10., 12., 14., 16., 18., 20., 22., 24., 26., 28., 30., 32., 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60., 62., 64., 66., 68., 70., 72., 74., 76., 78., 80., 82., 84., 86., 88., 90., 92., 94., 96., 98., 100., 102., 104., 106., 108., 110., 112., 114., 116., 118., 120., 122., 124., 126., 128., 130., 132., 134., 136., 138., 140., 142., 144., 146., 148., 150., 152., 154., 156., 158., 160., 162., 164., 166., 168., 170., 172., 174., 176., 178., 180., 182., 184., 186., 188., 190., 192., 194., 196., 198., 200., 202., 204., 206., 208., 210., 212., 214., 216., 218., 220., 222., 224., 226., 228., 230., 232., 234., 236., 238., 240., 242., 244., 246., 248., 250., 252., 254., 256., 258., 260., 262., 264., 266., 268., 270., 272., 274., 276., 278., 280., 282., 284., 286., 288., 290., 292., 294., 296., 298., 300., 302., 304., 306., 308., 310., 312., 314., 316., 318., 320., 322., 324., 326., 328., 330., 332., 334., 336., 338., 340., 342., 344., 346., 348., 350., 352., 354., 356., 358.])
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 28.80 kB 1.92 kB Shape (1800, 2) (120, 2) Count 45 Tasks 15 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- formula :
- p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- units :
- 1
- formula_terms :
- p0: p0 a: a_bnds b: b_bnds ps: ps
Array Chunk Bytes 604.80 kB 40.32 kB Shape (1800, 21, 2) (120, 21, 2) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - p0(time)float320.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
- long_name :
- vertical coordinate formula term: reference pressure
- units :
- Pa
array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)
- a(time, lev)float64dask.array<chunksize=(120, 21), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k)
Array Chunk Bytes 302.40 kB 20.16 kB Shape (1800, 21) (120, 21) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - b(time, lev)float64dask.array<chunksize=(120, 21), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k)
Array Chunk Bytes 302.40 kB 20.16 kB Shape (1800, 21) (120, 21) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - ps(time, lat, lon)float32dask.array<chunksize=(120, 120, 180), meta=np.ndarray>
- standard_name :
- surface_air_pressure
- long_name :
- Surface Air Pressure
- comment :
- not, in general, the same as mean sea-level pressure
- units :
- Pa
- cell_methods :
- time: mean
Array Chunk Bytes 155.52 MB 10.37 MB Shape (1800, 120, 180) (120, 120, 180) Count 45 Tasks 15 Chunks Type float32 numpy.ndarray - a_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k+1/2)
Array Chunk Bytes 604.80 kB 40.32 kB Shape (1800, 21, 2) (120, 21, 2) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - b_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k+1/2)
Array Chunk Bytes 604.80 kB 40.32 kB Shape (1800, 21, 2) (120, 21, 2) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(120, 120, 2), meta=np.ndarray>
Array Chunk Bytes 3.46 MB 230.40 kB Shape (1800, 120, 2) (120, 120, 2) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(120, 180, 2), meta=np.ndarray>
Array Chunk Bytes 5.18 MB 345.60 kB Shape (1800, 180, 2) (120, 180, 2) Count 60 Tasks 15 Chunks Type float64 numpy.ndarray - cl(time, lev, lat, lon)float32dask.array<chunksize=(120, 21, 120, 180), meta=np.ndarray>
- standard_name :
- cloud_area_fraction_in_atmosphere_layer
- long_name :
- Cloud Area Fraction
- comment :
- Report on model layers (not standard pressures). Include both large-scale and convective cloud.
- units :
- %
- original_name :
- cl
- cell_methods :
- time: mean (interval: 1 month)
- cell_measures :
- area: areacella
- history :
- 2010-06-23T13:05:01Z altered by CMOR: Reordered dimensions, original order: time lat lon lev.
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_fx_inmcm4_abrupt4xCO2_r0i0p0.nc areacella: areacella_fx_inmcm4_abrupt4xCO2_r0i0p0.nc
Array Chunk Bytes 3.27 GB 217.73 MB Shape (1800, 21, 120, 180) (120, 21, 120, 180) Count 45 Tasks 15 Chunks Type float32 numpy.ndarray
- institution :
- INM (Institute for Numerical Mathematics, Moscow, Russia)
- institute_id :
- INM
- experiment_id :
- abrupt4xCO2
- source :
- inmcm4 (2009)
- model_id :
- inmcm4
- forcing :
- N/A
- parent_experiment_id :
- piControl
- branch_time :
- 87600.0
- contact :
- Evgeny Volodin, volodin@inm.ras.ru,INM RAS, Gubkina 8, Moscow, 119333 Russia,+7-495-9383904
- history :
- Output from /data5/volodin/4CO2B 2010-06-23T13:05:01Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- comment :
- no comments
- references :
- Volodin, Diansky, Gusev 2010. Climate model INMCM4.0. Izvestia RAS. Atmospheric and oceanic physics, V.46, N4, in print.
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- f3992b10-91cb-43fd-8f9d-72176e1b5f44
- product :
- output
- experiment :
- abrupt 4XCO2
- frequency :
- mon
- creation_date :
- 2010-06-23T13:05:01Z
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table Amon (12 May 2010) 12e195f2fdc87c907b38b38e15851337
- title :
- inmcm4 model output prepared for CMIP5 abrupt 4XCO2
- parent_experiment :
- pre-industrial control
- modeling_realm :
- atmos
- realization :
- 1
- cmor_version :
- 2.0.0