inmcm4 model output prepared for CMIP5 RCP8.5
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/cli_Amon_inmcm4_rcp85_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | inmcm4 model output prepared for CMIP5 RCP8.5 |
location | /shared/cmip5/data/rcp85/atmos/mon/Amon/cli/INM.inmcm4/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/cli_Amon_inmcm4_rcp85_r1i1p1.yaml |
last updated | 2013-05-28 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 120, lev: 21, lon: 180, time: 1140) Coordinates: * time (time) float64 15.5 45.0 74.5 ... 3.46e+04 3.463e+04 3.466e+04 * lev (lev) float64 0.993 0.975 0.95 0.91 ... 0.041 0.0256 0.016 0.01 * lat (lat) float64 -89.25 -87.75 -86.25 -84.75 ... 86.25 87.75 89.25 * lon (lon) float64 0.0 2.0 4.0 6.0 8.0 ... 352.0 354.0 356.0 358.0 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> p0 (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 a (time, lev) float64 dask.array<chunksize=(120, 21), meta=np.ndarray> b (time, lev) float64 dask.array<chunksize=(120, 21), meta=np.ndarray> ps (time, lat, lon) float32 dask.array<chunksize=(120, 120, 180), meta=np.ndarray> a_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> b_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 21, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(120, 120, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(120, 180, 2), meta=np.ndarray> cli (time, lev, lat, lon) float32 dask.array<chunksize=(120, 21, 120, 180), meta=np.ndarray> Attributes: institution: INM (Institute for Numerical Mathematics, Moscow... institute_id: INM experiment_id: rcp85 source: inmcm4 (2009) model_id: inmcm4 forcing: N/A parent_experiment_id: historical branch_time: 56940.0 contact: Evgeny Volodin, volodin@inm.ras.ru,INM RAS, Gubki... history: Output from /data5/volodin/RCP85 2010-10-22T12:52... comment: no comments references: Volodin, Diansky, Gusev 2010. Climate model INMCM... initialization_method: 1 physics_version: 1 tracking_id: e3e8e1e6-e884-4743-9d21-c050987e7e5e product: output experiment: RCP8.5 frequency: mon creation_date: 2010-10-22T12:53:17Z Conventions: CF-1.4 project_id: CMIP5 table_id: Table Amon (12 May 2010) f29a09de1d9a9f83de4bde5e... title: inmcm4 model output prepared for CMIP5 RCP8.5 parent_experiment: Historical modeling_realm: atmos realization: 1 cmor_version: 2.0.0
xarray.Dataset
- bnds: 2
- lat: 120
- lev: 21
- lon: 180
- time: 1140
- time(time)float6415.5 45.0 ... 3.463e+04 3.466e+04
- bounds :
- time_bnds
- units :
- days since 2006-1-1
- calendar :
- 365_day
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([1.55000e+01, 4.50000e+01, 7.45000e+01, ..., 3.45985e+04, 3.46290e+04, 3.46595e+04])
- lev(lev)float640.993 0.975 0.95 ... 0.016 0.01
- bounds :
- lev_bnds
- units :
- 1
- axis :
- Z
- positive :
- down
- long_name :
- hybrid sigma pressure coordinate
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula :
- p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)
- formula_terms :
- p0: p0 a: a b: b ps: ps
array([0.993 , 0.975 , 0.95 , 0.91 , 0.85 , 0.78 , 0.7 , 0.62 , 0.54 , 0.46 , 0.38 , 0.3 , 0.23 , 0.17 , 0.12 , 0.09 , 0.065 , 0.041 , 0.0256, 0.016 , 0.01 ])
- lat(lat)float64-89.25 -87.75 ... 87.75 89.25
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-89.25, -87.75, -86.25, -84.75, -83.25, -81.75, -80.25, -78.75, -77.25, -75.75, -74.25, -72.75, -71.25, -69.75, -68.25, -66.75, -65.25, -63.75, -62.25, -60.75, -59.25, -57.75, -56.25, -54.75, -53.25, -51.75, -50.25, -48.75, -47.25, -45.75, -44.25, -42.75, -41.25, -39.75, -38.25, -36.75, -35.25, -33.75, -32.25, -30.75, -29.25, -27.75, -26.25, -24.75, -23.25, -21.75, -20.25, -18.75, -17.25, -15.75, -14.25, -12.75, -11.25, -9.75, -8.25, -6.75, -5.25, -3.75, -2.25, -0.75, 0.75, 2.25, 3.75, 5.25, 6.75, 8.25, 9.75, 11.25, 12.75, 14.25, 15.75, 17.25, 18.75, 20.25, 21.75, 23.25, 24.75, 26.25, 27.75, 29.25, 30.75, 32.25, 33.75, 35.25, 36.75, 38.25, 39.75, 41.25, 42.75, 44.25, 45.75, 47.25, 48.75, 50.25, 51.75, 53.25, 54.75, 56.25, 57.75, 59.25, 60.75, 62.25, 63.75, 65.25, 66.75, 68.25, 69.75, 71.25, 72.75, 74.25, 75.75, 77.25, 78.75, 80.25, 81.75, 83.25, 84.75, 86.25, 87.75, 89.25])
- lon(lon)float640.0 2.0 4.0 ... 354.0 356.0 358.0
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([ 0., 2., 4., 6., 8., 10., 12., 14., 16., 18., 20., 22., 24., 26., 28., 30., 32., 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60., 62., 64., 66., 68., 70., 72., 74., 76., 78., 80., 82., 84., 86., 88., 90., 92., 94., 96., 98., 100., 102., 104., 106., 108., 110., 112., 114., 116., 118., 120., 122., 124., 126., 128., 130., 132., 134., 136., 138., 140., 142., 144., 146., 148., 150., 152., 154., 156., 158., 160., 162., 164., 166., 168., 170., 172., 174., 176., 178., 180., 182., 184., 186., 188., 190., 192., 194., 196., 198., 200., 202., 204., 206., 208., 210., 212., 214., 216., 218., 220., 222., 224., 226., 228., 230., 232., 234., 236., 238., 240., 242., 244., 246., 248., 250., 252., 254., 256., 258., 260., 262., 264., 266., 268., 270., 272., 274., 276., 278., 280., 282., 284., 286., 288., 290., 292., 294., 296., 298., 300., 302., 304., 306., 308., 310., 312., 314., 316., 318., 320., 322., 324., 326., 328., 330., 332., 334., 336., 338., 340., 342., 344., 346., 348., 350., 352., 354., 356., 358.])
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 18.24 kB 1.92 kB Shape (1140, 2) (120, 2) Count 30 Tasks 10 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- formula :
- p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- units :
- 1
- formula_terms :
- p0: p0 a: a_bnds b: b_bnds ps: ps
Array Chunk Bytes 383.04 kB 40.32 kB Shape (1140, 21, 2) (120, 21, 2) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - p0(time)float320.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
- long_name :
- vertical coordinate formula term: reference pressure
- units :
- Pa
array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)
- a(time, lev)float64dask.array<chunksize=(120, 21), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k)
Array Chunk Bytes 191.52 kB 20.16 kB Shape (1140, 21) (120, 21) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - b(time, lev)float64dask.array<chunksize=(120, 21), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k)
Array Chunk Bytes 191.52 kB 20.16 kB Shape (1140, 21) (120, 21) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - ps(time, lat, lon)float32dask.array<chunksize=(120, 120, 180), meta=np.ndarray>
- standard_name :
- surface_air_pressure
- long_name :
- Surface Air Pressure
- comment :
- not, in general, the same as mean sea-level pressure
- units :
- Pa
- cell_methods :
- time: mean
Array Chunk Bytes 98.50 MB 10.37 MB Shape (1140, 120, 180) (120, 120, 180) Count 30 Tasks 10 Chunks Type float32 numpy.ndarray - a_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k+1/2)
Array Chunk Bytes 383.04 kB 40.32 kB Shape (1140, 21, 2) (120, 21, 2) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - b_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 21, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k+1/2)
Array Chunk Bytes 383.04 kB 40.32 kB Shape (1140, 21, 2) (120, 21, 2) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(120, 120, 2), meta=np.ndarray>
Array Chunk Bytes 2.19 MB 230.40 kB Shape (1140, 120, 2) (120, 120, 2) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(120, 180, 2), meta=np.ndarray>
Array Chunk Bytes 3.28 MB 345.60 kB Shape (1140, 180, 2) (120, 180, 2) Count 40 Tasks 10 Chunks Type float64 numpy.ndarray - cli(time, lev, lat, lon)float32dask.array<chunksize=(120, 21, 120, 180), meta=np.ndarray>
- standard_name :
- mass_fraction_of_cloud_ice_in_air
- long_name :
- Mass Fraction of Cloud Ice
- comment :
- Report on model layers (not standard pressures). Include both large-scale and convective cloud. Calculate as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.
- units :
- 1
- original_name :
- cli
- cell_methods :
- time: mean (interval: 1 month)
- cell_measures :
- area: areacella
- history :
- 2010-10-22T12:52:46Z altered by CMOR: Reordered dimensions, original order: time lat lon lev.
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_fx_inmcm4_rcp85_r0i0p0.nc areacella: areacella_fx_inmcm4_rcp85_r0i0p0.nc
Array Chunk Bytes 2.07 GB 217.73 MB Shape (1140, 21, 120, 180) (120, 21, 120, 180) Count 30 Tasks 10 Chunks Type float32 numpy.ndarray
- institution :
- INM (Institute for Numerical Mathematics, Moscow, Russia)
- institute_id :
- INM
- experiment_id :
- rcp85
- source :
- inmcm4 (2009)
- model_id :
- inmcm4
- forcing :
- N/A
- parent_experiment_id :
- historical
- branch_time :
- 56940.0
- contact :
- Evgeny Volodin, volodin@inm.ras.ru,INM RAS, Gubkina 8, Moscow, 119333 Russia,+7-495-9383904
- history :
- Output from /data5/volodin/RCP85 2010-10-22T12:52:47Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- comment :
- no comments
- references :
- Volodin, Diansky, Gusev 2010. Climate model INMCM4.0. Izvestia RAS. Atmospheric and oceanic physics, V.46, N4, in print.
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- e3e8e1e6-e884-4743-9d21-c050987e7e5e
- product :
- output
- experiment :
- RCP8.5
- frequency :
- mon
- creation_date :
- 2010-10-22T12:53:17Z
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table Amon (12 May 2010) f29a09de1d9a9f83de4bde5e1b0bd83a
- title :
- inmcm4 model output prepared for CMIP5 RCP8.5
- parent_experiment :
- Historical
- modeling_realm :
- atmos
- realization :
- 1
- cmor_version :
- 2.0.0