CMCC-CESM model output prepared for CMIP5 RCP8.5
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/clw_Amon_CMCC-CESM_rcp85_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | CMCC-CESM model output prepared for CMIP5 RCP8.5 |
location | /shared/cmip5/data/rcp85/atmos/mon/Amon/clw/CMCC.CMCC-CESM/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/clw_Amon_CMCC-CESM_rcp85_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 48, lev: 39, lon: 96, time: 1152) Coordinates: * time (time) float64 15.5 45.5 75.5 ... 3.576e+03 3.606e+03 3.636e+03 * lev (lev) float64 0.9961 0.9826 0.9548 ... 3.543e-05 9.946e-06 * lat (lat) float64 -87.16 -83.48 -79.78 -76.07 ... 79.78 83.48 87.16 * lon (lon) float64 0.0 3.75 7.5 11.25 15.0 ... 345.0 348.8 352.5 356.2 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(60, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(60, 39, 2), meta=np.ndarray> p0 (time) float32 100000.0 100000.0 100000.0 ... 100000.0 100000.0 a (time, lev) float64 dask.array<chunksize=(60, 39), meta=np.ndarray> b (time, lev) float64 dask.array<chunksize=(60, 39), meta=np.ndarray> ps (time, lat, lon) float32 dask.array<chunksize=(60, 48, 96), meta=np.ndarray> a_bnds (time, lev, bnds) float64 dask.array<chunksize=(60, 39, 2), meta=np.ndarray> b_bnds (time, lev, bnds) float64 dask.array<chunksize=(60, 39, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(60, 48, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(60, 96, 2), meta=np.ndarray> clw (time, lev, lat, lon) float32 dask.array<chunksize=(60, 39, 48, 96), meta=np.ndarray> Attributes: institution: CMCC - Centro Euro-Mediterraneo per i Cambiamenti... institute_id: CMCC experiment_id: rcp85 source: CMCC-CESM model_id: CMCC-CESM forcing: Nat,Ant,GHG,SA,Oz,Sl parent_experiment_id: historical parent_experiment_rip: r1i1p1 branch_time: 56978.0 contact: Marcello Vichi (marcello.vichi@cmcc.it) history: Model output postprocessed with Afterburner and C... comment: Equilibrium reached after more than 1500-year spi... references: model described in the documentation at http://ww... initialization_method: 1 physics_version: 1 tracking_id: dc992bc7-6fa7-4c42-9403-6174345b7f22 product: output experiment: RCP8.5 frequency: mon creation_date: 2012-07-26T14:51:46Z Conventions: CF-1.4 project_id: CMIP5 table_id: Table Amon (27 April 2011) a5a1c518f52ae340313ba0... title: CMCC-CESM model output prepared for CMIP5 RCP8.5 parent_experiment: historical modeling_realm: atmos realization: 1 cmor_version: 2.7.1
xarray.Dataset
- bnds: 2
- lat: 48
- lev: 39
- lon: 96
- time: 1152
- time(time)float6415.5 45.5 ... 3.606e+03 3.636e+03
- bounds :
- time_bnds
- calendar :
- standard
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([ 15.5, 45.5, 75.5, ..., 3575.5, 3606. , 3636.5])
- lev(lev)float640.9961 0.9826 ... 9.946e-06
- bounds :
- lev_bnds
- units :
- 1
- axis :
- Z
- positive :
- down
- long_name :
- hybrid sigma pressure coordinate
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula :
- p = a*p0 + b*ps
- formula_terms :
- p0: p0 a: a b: b ps: ps
array([9.961407e-01, 9.826334e-01, 9.547820e-01, 9.092581e-01, 8.464436e-01, 7.691647e-01, 6.816637e-01, 5.887858e-01, 4.965112e-01, 4.111473e-01, 3.369508e-01, 2.745220e-01, 2.222662e-01, 1.787704e-01, 1.427904e-01, 1.132339e-01, 8.914075e-02, 6.966111e-02, 5.403643e-02, 4.159872e-02, 3.177400e-02, 2.407468e-02, 1.809012e-02, 1.347742e-02, 9.952803e-03, 7.283551e-03, 5.280590e-03, 3.791768e-03, 2.695854e-03, 1.894518e-03, 1.310861e-03, 8.905416e-04, 5.934676e-04, 3.875889e-04, 2.457438e-04, 1.463488e-04, 7.804715e-05, 3.543221e-05, 9.945912e-06])
- lat(lat)float64-87.16 -83.48 ... 83.48 87.16
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-87.159095, -83.478937, -79.777046, -76.070244, -72.361581, -68.652017, -64.941949, -61.231573, -57.520994, -53.810274, -50.099453, -46.388558, -42.677606, -38.96661 , -35.25558 , -31.544523, -27.833444, -24.122348, -20.411238, -16.700118, -12.988989, -9.277853, -5.566714, -1.855571, 1.855571, 5.566714, 9.277853, 12.988989, 16.700118, 20.411238, 24.122348, 27.833444, 31.544523, 35.25558 , 38.96661 , 42.677606, 46.388558, 50.099453, 53.810274, 57.520994, 61.231573, 64.941949, 68.652017, 72.361581, 76.070244, 79.777046, 83.478937, 87.159095])
- lon(lon)float640.0 3.75 7.5 ... 348.8 352.5 356.2
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([ 0. , 3.75, 7.5 , 11.25, 15. , 18.75, 22.5 , 26.25, 30. , 33.75, 37.5 , 41.25, 45. , 48.75, 52.5 , 56.25, 60. , 63.75, 67.5 , 71.25, 75. , 78.75, 82.5 , 86.25, 90. , 93.75, 97.5 , 101.25, 105. , 108.75, 112.5 , 116.25, 120. , 123.75, 127.5 , 131.25, 135. , 138.75, 142.5 , 146.25, 150. , 153.75, 157.5 , 161.25, 165. , 168.75, 172.5 , 176.25, 180. , 183.75, 187.5 , 191.25, 195. , 198.75, 202.5 , 206.25, 210. , 213.75, 217.5 , 221.25, 225. , 228.75, 232.5 , 236.25, 240. , 243.75, 247.5 , 251.25, 255. , 258.75, 262.5 , 266.25, 270. , 273.75, 277.5 , 281.25, 285. , 288.75, 292.5 , 296.25, 300. , 303.75, 307.5 , 311.25, 315. , 318.75, 322.5 , 326.25, 330. , 333.75, 337.5 , 341.25, 345. , 348.75, 352.5 , 356.25])
- time_bnds(time, bnds)float64dask.array<chunksize=(60, 2), meta=np.ndarray>
Array Chunk Bytes 18.43 kB 1.92 kB Shape (1152, 2) (120, 2) Count 33 Tasks 11 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(60, 39, 2), meta=np.ndarray>
- formula :
- p = a*p0 + b*ps
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- units :
- 1
- formula_terms :
- p0: p0 a: a_bnds b: b_bnds ps: ps
Array Chunk Bytes 718.85 kB 74.88 kB Shape (1152, 39, 2) (120, 39, 2) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - p0(time)float32100000.0 100000.0 ... 100000.0
- long_name :
- vertical coordinate formula term: reference pressure
- units :
- Pa
array([100000., 100000., 100000., ..., 100000., 100000., 100000.], dtype=float32)
- a(time, lev)float64dask.array<chunksize=(60, 39), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k)
Array Chunk Bytes 359.42 kB 37.44 kB Shape (1152, 39) (120, 39) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - b(time, lev)float64dask.array<chunksize=(60, 39), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k)
Array Chunk Bytes 359.42 kB 37.44 kB Shape (1152, 39) (120, 39) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - ps(time, lat, lon)float32dask.array<chunksize=(60, 48, 96), meta=np.ndarray>
- standard_name :
- surface_air_pressure
- long_name :
- Surface Air Pressure
- comment :
- not, in general, the same as mean sea-level pressure
- units :
- Pa
- cell_methods :
- time: mean
- cell_measures :
- area: areacella
Array Chunk Bytes 21.23 MB 2.21 MB Shape (1152, 48, 96) (120, 48, 96) Count 33 Tasks 11 Chunks Type float32 numpy.ndarray - a_bnds(time, lev, bnds)float64dask.array<chunksize=(60, 39, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: a(k+1/2)
Array Chunk Bytes 718.85 kB 74.88 kB Shape (1152, 39, 2) (120, 39, 2) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - b_bnds(time, lev, bnds)float64dask.array<chunksize=(60, 39, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k+1/2)
Array Chunk Bytes 718.85 kB 74.88 kB Shape (1152, 39, 2) (120, 39, 2) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(60, 48, 2), meta=np.ndarray>
Array Chunk Bytes 884.74 kB 92.16 kB Shape (1152, 48, 2) (120, 48, 2) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(60, 96, 2), meta=np.ndarray>
Array Chunk Bytes 1.77 MB 184.32 kB Shape (1152, 96, 2) (120, 96, 2) Count 44 Tasks 11 Chunks Type float64 numpy.ndarray - clw(time, lev, lat, lon)float32dask.array<chunksize=(60, 39, 48, 96), meta=np.ndarray>
- standard_name :
- mass_fraction_of_cloud_liquid_water_in_air
- long_name :
- Mass Fraction of Cloud Liquid Water
- comment :
- Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model.
- units :
- 1
- original_name :
- xl
- original_units :
- kg/kg
- history :
- 2012-07-26T14:51:45Z altered by CMOR: Converted units from 'kg/kg' to '1'. 2012-07-26T14:51:46Z altered by CMOR: Inverted axis: lev. 2012-07-26T14:51:46Z altered by CMOR: Inverted axis: lat.
- cell_methods :
- time: mean (interval: 1 month)
- cell_measures :
- area: areacella
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_atmos_fx_CMCC-CESM_rcp85_r0i0p0.nc areacella: areacella_fx_CMCC-CESM_rcp85_r0i0p0.nc
Array Chunk Bytes 828.11 MB 86.26 MB Shape (1152, 39, 48, 96) (120, 39, 48, 96) Count 33 Tasks 11 Chunks Type float32 numpy.ndarray
- institution :
- CMCC - Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
- institute_id :
- CMCC
- experiment_id :
- rcp85
- source :
- CMCC-CESM
- model_id :
- CMCC-CESM
- forcing :
- Nat,Ant,GHG,SA,Oz,Sl
- parent_experiment_id :
- historical
- parent_experiment_rip :
- r1i1p1
- branch_time :
- 56978.0
- contact :
- Marcello Vichi (marcello.vichi@cmcc.it)
- history :
- Model output postprocessed with Afterburner and CDO (https://code.zmaw.de/projects) 2012-07-26T14:51:46Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- comment :
- Equilibrium reached after more than 1500-year spin-up of the physics, 200-year spin-up of carbon content and 276 year at pre-industrial GHG concentrations after which data were output with nominal date of January 1850.
- references :
- model described in the documentation at http://www.cmcc.it/data-models/models
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- dc992bc7-6fa7-4c42-9403-6174345b7f22
- product :
- output
- experiment :
- RCP8.5
- frequency :
- mon
- creation_date :
- 2012-07-26T14:51:46Z
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table Amon (27 April 2011) a5a1c518f52ae340313ba0aada03f862
- title :
- CMCC-CESM model output prepared for CMIP5 RCP8.5
- parent_experiment :
- historical
- modeling_realm :
- atmos
- realization :
- 1
- cmor_version :
- 2.7.1