IPSL-CM5A-MR model output prepared for CMIP5 abrupt 4XCO2
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/clw_Amon_IPSL-CM5A-MR_abrupt4xCO2_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | IPSL-CM5A-MR model output prepared for CMIP5 abrupt 4XCO2 |
location | /shared/cmip5/data/abrupt4xCO2/atmos/mon/Amon/clw/IPSL.IPSL-CM5A-MR/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/clw_Amon_IPSL-CM5A-MR_abrupt4xCO2_r1i1p1.yaml |
last updated | 2013-05-23 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 143, lev: 39, lon: 144, time: 1680) Coordinates: * time (time) float64 15.5 45.0 74.5 ... 5.102e+04 5.105e+04 5.108e+04 * lev (lev) float64 0.9958 0.9863 0.9736 ... 0.0001571 4.251e-05 * lat (lat) float64 -90.0 -88.73 -87.46 -86.2 ... 86.2 87.46 88.73 90.0 * lon (lon) float64 0.0 2.5 5.0 7.5 10.0 ... 350.0 352.5 355.0 357.5 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(600, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(600, 39, 2), meta=np.ndarray> ap (time, lev) float64 dask.array<chunksize=(600, 39), meta=np.ndarray> b (time, lev) float64 dask.array<chunksize=(600, 39), meta=np.ndarray> ps (time, lat, lon) float32 dask.array<chunksize=(600, 143, 144), meta=np.ndarray> ap_bnds (time, lev, bnds) float64 dask.array<chunksize=(600, 39, 2), meta=np.ndarray> b_bnds (time, lev, bnds) float64 dask.array<chunksize=(600, 39, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(600, 143, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(600, 144, 2), meta=np.ndarray> clw (time, lev, lat, lon) float32 dask.array<chunksize=(600, 39, 143, 144), meta=np.ndarray> Attributes: institution: IPSL (Institut Pierre Simon Laplace, Paris, France) institute_id: IPSL experiment_id: abrupt4xCO2 source: IPSL-CM5A-MR (2010) : atmos : LMDZ4 (LMDZ4_v5, 14... model_id: IPSL-CM5A-MR forcing: GHG parent_experiment_id: piControl parent_experiment_rip: r1i1p1 branch_time: 1850.0 contact: ipsl-cmip5 _at_ ipsl.jussieu.fr Data manager : Se... comment: This abrupt4xCO2 simulation was initiated from a ... references: Model documentation and further reference availab... initialization_method: 1 physics_version: 1 tracking_id: d2d6873d-9731-4131-9890-5c908d0b2148 product: output experiment: abrupt 4XCO2 frequency: mon creation_date: 2012-01-15T23:53:52Z history: 2012-01-15T23:53:52Z CMOR rewrote data to comply ... Conventions: CF-1.4 project_id: CMIP5 table_id: Table Amon (31 January 2011) 53b766a395ac41696af4... title: IPSL-CM5A-MR model output prepared for CMIP5 abru... parent_experiment: pre-industrial control modeling_realm: atmos realization: 1 cmor_version: 2.7.1
xarray.Dataset
- bnds: 2
- lat: 143
- lev: 39
- lon: 144
- time: 1680
- time(time)float6415.5 45.0 ... 5.105e+04 5.108e+04
- bounds :
- time_bnds
- units :
- days since 1850-01-01 00:00:00
- calendar :
- noleap
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([1.55000e+01, 4.50000e+01, 7.45000e+01, ..., 5.10235e+04, 5.10540e+04, 5.10845e+04])
- lev(lev)float640.9958 0.9863 ... 4.251e-05
- bounds :
- lev_bnds
- units :
- 1
- axis :
- Z
- positive :
- down
- long_name :
- hybrid sigma pressure coordinate
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula :
- p = ap + b*ps
- formula_terms :
- ap: ap b: b ps: ps
array([9.957716e-01, 9.862627e-01, 9.736140e-01, 9.558820e-01, 9.313989e-01, 8.988125e-01, 8.571400e-01, 8.058494e-01, 7.449900e-01, 6.753821e-01, 5.988512e-01, 5.184424e-01, 4.384500e-01, 3.639867e-01, 2.998238e-01, 2.486269e-01, 2.096053e-01, 1.791188e-01, 1.532737e-01, 1.299950e-01, 1.088261e-01, 8.982668e-02, 7.305642e-02, 5.850303e-02, 4.608948e-02, 3.568636e-02, 2.712528e-02, 2.021213e-02, 1.473953e-02, 1.049771e-02, 7.283558e-03, 4.907410e-03, 3.197900e-03, 2.004757e-03, 1.199952e-03, 6.774612e-04, 3.520031e-04, 1.570627e-04, 4.250516e-05])
- lat(lat)float64-90.0 -88.73 -87.46 ... 88.73 90.0
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-90. , -88.732391, -87.46479 , -86.197182, -84.929581, -83.661972, -82.394363, -81.126762, -79.859154, -78.591553, -77.323944, -76.056335, -74.788734, -73.521126, -72.253525, -70.985916, -69.718307, -68.450706, -67.183098, -65.915489, -64.647888, -63.380283, -62.112675, -60.84507 , -59.577465, -58.30986 , -57.042255, -55.774647, -54.507042, -53.239437, -51.971832, -50.704224, -49.436619, -48.169014, -46.901409, -45.633804, -44.366196, -43.098591, -41.830986, -40.563381, -39.295776, -38.028168, -36.760563, -35.492958, -34.225353, -32.957745, -31.690142, -30.422535, -29.15493 , -27.887323, -26.619719, -25.352112, -24.084507, -22.816902, -21.549295, -20.281691, -19.014084, -17.746479, -16.478872, -15.211267, -13.943662, -12.676056, -11.408451, -10.140845, -8.87324 , -7.605634, -6.338028, -5.070423, -3.802817, -2.535211, -1.267606, 0. , 1.267606, 2.535211, 3.802817, 5.070423, 6.338028, 7.605634, 8.87324 , 10.140845, 11.408451, 12.676056, 13.943662, 15.211267, 16.478872, 17.746479, 19.014084, 20.281691, 21.549295, 22.816902, 24.084507, 25.352112, 26.619719, 27.887323, 29.15493 , 30.422535, 31.690142, 32.957745, 34.225353, 35.492958, 36.760563, 38.028168, 39.295776, 40.563381, 41.830986, 43.098591, 44.366196, 45.633804, 46.901409, 48.169014, 49.436619, 50.704224, 51.971832, 53.239437, 54.507042, 55.774647, 57.042255, 58.30986 , 59.577465, 60.84507 , 62.112675, 63.380283, 64.647888, 65.915489, 67.183098, 68.450706, 69.718307, 70.985916, 72.253525, 73.521126, 74.788734, 76.056335, 77.323944, 78.591553, 79.859154, 81.126762, 82.394363, 83.661972, 84.929581, 86.197182, 87.46479 , 88.732391, 90. ])
- lon(lon)float640.0 2.5 5.0 ... 352.5 355.0 357.5
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([ 0. , 2.5, 5. , 7.5, 10. , 12.5, 15. , 17.5, 20. , 22.5, 25. , 27.5, 30. , 32.5, 35. , 37.5, 40. , 42.5, 45. , 47.5, 50. , 52.5, 55. , 57.5, 60. , 62.5, 65. , 67.5, 70. , 72.5, 75. , 77.5, 80. , 82.5, 85. , 87.5, 90. , 92.5, 95. , 97.5, 100. , 102.5, 105. , 107.5, 110. , 112.5, 115. , 117.5, 120. , 122.5, 125. , 127.5, 130. , 132.5, 135. , 137.5, 140. , 142.5, 145. , 147.5, 150. , 152.5, 155. , 157.5, 160. , 162.5, 165. , 167.5, 170. , 172.5, 175. , 177.5, 180. , 182.5, 185. , 187.5, 190. , 192.5, 195. , 197.5, 200. , 202.5, 205. , 207.5, 210. , 212.5, 215. , 217.5, 220. , 222.5, 225. , 227.5, 230. , 232.5, 235. , 237.5, 240. , 242.5, 245. , 247.5, 250. , 252.5, 255. , 257.5, 260. , 262.5, 265. , 267.5, 270. , 272.5, 275. , 277.5, 280. , 282.5, 285. , 287.5, 290. , 292.5, 295. , 297.5, 300. , 302.5, 305. , 307.5, 310. , 312.5, 315. , 317.5, 320. , 322.5, 325. , 327.5, 330. , 332.5, 335. , 337.5, 340. , 342.5, 345. , 347.5, 350. , 352.5, 355. , 357.5])
- time_bnds(time, bnds)float64dask.array<chunksize=(600, 2), meta=np.ndarray>
Array Chunk Bytes 26.88 kB 9.60 kB Shape (1680, 2) (600, 2) Count 9 Tasks 3 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(600, 39, 2), meta=np.ndarray>
- formula :
- p = ap + b*ps
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- units :
- 1
- formula_terms :
- ap: ap_bnds b: b_bnds ps: ps
Array Chunk Bytes 1.05 MB 374.40 kB Shape (1680, 39, 2) (600, 39, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - ap(time, lev)float64dask.array<chunksize=(600, 39), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: ap(k)
- units :
- Pa
Array Chunk Bytes 524.16 kB 187.20 kB Shape (1680, 39) (600, 39) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - b(time, lev)float64dask.array<chunksize=(600, 39), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k)
Array Chunk Bytes 524.16 kB 187.20 kB Shape (1680, 39) (600, 39) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - ps(time, lat, lon)float32dask.array<chunksize=(600, 143, 144), meta=np.ndarray>
- standard_name :
- surface_air_pressure
- long_name :
- Surface Air Pressure
- comment :
- not, in general, the same as mean sea-level pressure
- units :
- Pa
- cell_methods :
- time: mean
- cell_measures :
- area: areacella
Array Chunk Bytes 138.38 MB 49.42 MB Shape (1680, 143, 144) (600, 143, 144) Count 9 Tasks 3 Chunks Type float32 numpy.ndarray - ap_bnds(time, lev, bnds)float64dask.array<chunksize=(600, 39, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: ap(k+1/2)
- units :
- Pa
Array Chunk Bytes 1.05 MB 374.40 kB Shape (1680, 39, 2) (600, 39, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - b_bnds(time, lev, bnds)float64dask.array<chunksize=(600, 39, 2), meta=np.ndarray>
- long_name :
- vertical coordinate formula term: b(k+1/2)
Array Chunk Bytes 1.05 MB 374.40 kB Shape (1680, 39, 2) (600, 39, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(600, 143, 2), meta=np.ndarray>
Array Chunk Bytes 3.84 MB 1.37 MB Shape (1680, 143, 2) (600, 143, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(600, 144, 2), meta=np.ndarray>
Array Chunk Bytes 3.87 MB 1.38 MB Shape (1680, 144, 2) (600, 144, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - clw(time, lev, lat, lon)float32dask.array<chunksize=(600, 39, 143, 144), meta=np.ndarray>
- standard_name :
- mass_fraction_of_cloud_liquid_water_in_air
- long_name :
- Mass Fraction of Cloud Liquid Water
- comment :
- Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model.
- units :
- 1
- original_name :
- lwcon
- original_units :
- kg/kg
- history :
- 2012-01-15T23:53:33Z altered by CMOR: Converted units from 'kg/kg' to '1'. 2012-01-15T23:53:33Z altered by CMOR: replaced missing value flag (9.96921e+36) with standard missing value (1e+20). 2012-01-15T23:53:52Z altered by CMOR: Inverted axis: lat.
- cell_methods :
- time: mean (interval: 30 minutes)
- cell_measures :
- area: areacella
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_atmos_fx_IPSL-CM5A-MR_abrupt4xCO2_r0i0p0.nc areacella: areacella_fx_IPSL-CM5A-MR_abrupt4xCO2_r0i0p0.nc
Array Chunk Bytes 5.40 GB 1.93 GB Shape (1680, 39, 143, 144) (600, 39, 143, 144) Count 9 Tasks 3 Chunks Type float32 numpy.ndarray
- institution :
- IPSL (Institut Pierre Simon Laplace, Paris, France)
- institute_id :
- IPSL
- experiment_id :
- abrupt4xCO2
- source :
- IPSL-CM5A-MR (2010) : atmos : LMDZ4 (LMDZ4_v5, 144x143x39); ocean : ORCA2 (NEMOV2_3, 2x2L31); seaIce : LIM2 (NEMOV2_3); ocnBgchem : PISCES (NEMOV2_3); land : ORCHIDEE (orchidee_1_9_4_AR5)
- model_id :
- IPSL-CM5A-MR
- forcing :
- GHG
- parent_experiment_id :
- piControl
- parent_experiment_rip :
- r1i1p1
- branch_time :
- 1850.0
- contact :
- ipsl-cmip5 _at_ ipsl.jussieu.fr Data manager : Sebastien Denvil
- comment :
- This abrupt4xCO2 simulation was initiated from a preindustrial control simulation when equilibrium was reached.
- references :
- Model documentation and further reference available here : http://icmc.ipsl.fr
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- d2d6873d-9731-4131-9890-5c908d0b2148
- product :
- output
- experiment :
- abrupt 4XCO2
- frequency :
- mon
- creation_date :
- 2012-01-15T23:53:52Z
- history :
- 2012-01-15T23:53:52Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table Amon (31 January 2011) 53b766a395ac41696af40aab76a49ae5
- title :
- IPSL-CM5A-MR model output prepared for CMIP5 abrupt 4XCO2
- parent_experiment :
- pre-industrial control
- modeling_realm :
- atmos
- realization :
- 1
- cmor_version :
- 2.7.1