ea_oper_an+fc_daily_MJJAS
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/ea_oper_an+fc_daily_MJJAS.yaml")
ds=cat.netcdf.read()
Metadata
title | ea_oper_an+fc_daily_MJJAS |
location | /reanalysis/land/ERA5/daily/conus |
tags | global,reanalysis,daily |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/ea_oper_an+fc_daily_MJJAS.yaml |
last updated | 2021-02-10 |
Dataset Contents
<xarray.Dataset> Dimensions: (lat: 95, lon: 212, time: 6426) Coordinates: * lat (lat) float32 24.30913 24.59016 24.87119 ... 50.44494 50.72598 * lon (lon) float32 -125.15625 -124.875 -124.59375 ... -66.09375 -65.8125 * time (time) float64 0.0 24.0 48.0 72.0 ... 3.6e+03 3.624e+03 3.648e+03 Data variables: d2m (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> mtpr (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> sdlw (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> sdsw (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> slhf (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> snlw (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> snsw (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> sshf (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> swvl1 (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> swvl2 (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> swvl3 (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> swvl4 (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> t2m (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> t2max (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> t2min (time, lat, lon) float32 dask.array<chunksize=(153, 95, 212), meta=np.ndarray> Attributes: CDI: Climate Data Interface version 1.8.2 (http://mpimet.mpg.de/... Conventions: CF-1.6 history: Tue Feb 9 18:18:34 2021: /usr/local/apps/nco/4.6.7/bin/nck... CDO: Climate Data Operators version 1.8.2 (http://mpimet.mpg.de/... NCO: 4.6.7
xarray.Dataset
- lat: 95
- lon: 212
- time: 6426
- lat(lat)float3224.30913 24.59016 ... 50.72598
- standard_name :
- latitude
- long_name :
- latitude
- units :
- degrees_north
- axis :
- Y
array([24.30913, 24.59016, 24.87119, 25.15222, 25.43325, 25.71428, 25.99531, 26.27634, 26.55737, 26.8384 , 27.11943, 27.40046, 27.68149, 27.96252, 28.24355, 28.52458, 28.80561, 29.08664, 29.36767, 29.6487 , 29.92973, 30.21076, 30.49179, 30.77282, 31.05385, 31.33488, 31.61591, 31.89694, 32.17797, 32.459 , 32.74004, 33.02106, 33.3021 , 33.58313, 33.86416, 34.14519, 34.42622, 34.70725, 34.98828, 35.26931, 35.55034, 35.83137, 36.1124 , 36.39343, 36.67446, 36.95549, 37.23652, 37.51755, 37.79858, 38.07961, 38.36064, 38.64167, 38.9227 , 39.20373, 39.48476, 39.76579, 40.04683, 40.32785, 40.60888, 40.88992, 41.17094, 41.45198, 41.73301, 42.01403, 42.29507, 42.5761 , 42.85713, 43.13816, 43.41919, 43.70022, 43.98125, 44.26228, 44.54331, 44.82434, 45.10537, 45.3864 , 45.66743, 45.94846, 46.22949, 46.51052, 46.79155, 47.07258, 47.35361, 47.63464, 47.91567, 48.1967 , 48.47773, 48.75876, 49.03979, 49.32082, 49.60185, 49.88288, 50.16391, 50.44494, 50.72598], dtype=float32)
- lon(lon)float32-125.15625 -124.875 ... -65.8125
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
- axis :
- X
array([-125.15625, -124.875 , -124.59375, ..., -66.375 , -66.09375, -65.8125 ], dtype=float32)
- time(time)float640.0 24.0 ... 3.624e+03 3.648e+03
- standard_name :
- time
- calendar :
- standard
- axis :
- T
array([ 0., 24., 48., ..., 3600., 3624., 3648.])
- d2m(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- 2 metre dewpoint temperature [T]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - mtpr(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean total precipitation rate [kg m**-2 s**-1]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - sdlw(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface downward long-wave radiation flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - sdsw(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface downward short-wave radiation flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - slhf(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface latent heat flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - snlw(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface net long-wave radiation flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - snsw(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface net short-wave radiation flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - sshf(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Mean surface sensible heat flux [W m**-2]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - swvl1(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Volumetric soil water layer 1 [m**3 m**-3]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - swvl2(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Volumetric soil water layer 2 [m**3 m**-3]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - swvl3(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Volumetric soil water layer 3 [m**3 m**-3]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - swvl4(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- Volumetric soil water layer 4 [m**3 m**-3]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - t2m(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- 2 metre temperature [K]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - t2max(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- 2 metre maximum temperature [K]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray - t2min(time, lat, lon)float32dask.array<chunksize=(153, 95, 212), meta=np.ndarray>
- long_name :
- 2 metre minimum temperature [K]
Array Chunk Bytes 517.68 MB 12.33 MB Shape (6426, 95, 212) (153, 95, 212) Count 126 Tasks 42 Chunks Type float32 numpy.ndarray
- CDI :
- Climate Data Interface version 1.8.2 (http://mpimet.mpg.de/cdi)
- Conventions :
- CF-1.6
- history :
- Tue Feb 9 18:18:34 2021: /usr/local/apps/nco/4.6.7/bin/ncks -O -4 -L 1 /home/rd/napd/perm/conus/ea_oper_an+fc_daily_1979.nc /home/rd/napd/perm/conus/ea_oper_an+fc_daily_MJJAS_1979.nc4 Tue Feb 09 18:18:32 2021: cdo -f nc import_binary /home/rd/napd/perm/conus/ea_oper_an+fc_daily_1979.ctl /home/rd/napd/perm/conus/ea_oper_an+fc_daily_1979.nc
- CDO :
- Climate Data Operators version 1.8.2 (http://mpimet.mpg.de/cdo)
- NCO :
- 4.6.7