Temperature and salinity analysis

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/bnoushin7/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/en4.2.1.yaml") ds = cat['netcdf'].to_dask() ds

Metadata

title Temperature and salinity analysis
location /project/atlantic_var/ogozdz/EN4/downloaded
tags gridded,obs,ocn
catalog_dir https://raw.githubusercontent.com/bnoushin7/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/en4.2.1.yaml
last updated 2019-08-01

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • bnds: 2
    • depth: 42
    • lat: 173
    • lon: 360
    • time: 1428
    • lon
      (lon)
      float32
      1.0 2.0 3.0 ... 358.0 359.0 360.0
      long_name :
      longitude
      units :
      degrees_east
      standard_name :
      longitude
      array([  1.,   2.,   3., ..., 358., 359., 360.], dtype=float32)
    • depth
      (depth)
      float32
      5.0215898 15.07854 ... 5350.272
      long_name :
      depth
      units :
      metres
      positive :
      down
      standard_name :
      depth
      bounds :
      depth_bnds
      array([5.021590e+00, 1.507854e+01, 2.516046e+01, 3.527829e+01, 4.544776e+01,
             5.569149e+01, 6.604198e+01, 7.654591e+01, 8.727029e+01, 9.831118e+01,
             1.098062e+02, 1.219519e+02, 1.350285e+02, 1.494337e+02, 1.657285e+02,
             1.846975e+02, 2.074254e+02, 2.353862e+02, 2.705341e+02, 3.153741e+02,
             3.729655e+02, 4.468009e+02, 5.405022e+02, 6.573229e+02, 7.995496e+02,
             9.679958e+02, 1.161806e+03, 1.378661e+03, 1.615291e+03, 1.868071e+03,
             2.133517e+03, 2.408583e+03, 2.690780e+03, 2.978166e+03, 3.269278e+03,
             3.563041e+03, 3.858676e+03, 4.155628e+03, 4.453502e+03, 4.752021e+03,
             5.050990e+03, 5.350272e+03], dtype=float32)
    • lat
      (lat)
      float32
      -83.0 -82.0 -81.0 ... 88.0 89.0
      long_name :
      latitude
      units :
      degrees_north
      standard_name :
      latitude
      array([-83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72.,
             -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60.,
             -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48.,
             -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36.,
             -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24.,
             -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12.,
             -11., -10.,  -9.,  -8.,  -7.,  -6.,  -5.,  -4.,  -3.,  -2.,  -1.,   0.,
               1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.,  12.,
              13.,  14.,  15.,  16.,  17.,  18.,  19.,  20.,  21.,  22.,  23.,  24.,
              25.,  26.,  27.,  28.,  29.,  30.,  31.,  32.,  33.,  34.,  35.,  36.,
              37.,  38.,  39.,  40.,  41.,  42.,  43.,  44.,  45.,  46.,  47.,  48.,
              49.,  50.,  51.,  52.,  53.,  54.,  55.,  56.,  57.,  58.,  59.,  60.,
              61.,  62.,  63.,  64.,  65.,  66.,  67.,  68.,  69.,  70.,  71.,  72.,
              73.,  74.,  75.,  76.,  77.,  78.,  79.,  80.,  81.,  82.,  83.,  84.,
              85.,  86.,  87.,  88.,  89.], dtype=float32)
    • time
      (time)
      datetime64[ns]
      1900-01-16T12:00:00 ... 2018-12-16T12:00:00
      standard_name :
      time
      bounds :
      time_bnds
      array(['1900-01-16T12:00:00.000000000', '1900-02-15T00:00:00.000000000',
             '1900-03-16T12:00:00.000000000', ..., '2018-10-16T12:00:00.000000000',
             '2018-11-16T00:00:00.000000000', '2018-12-16T12:00:00.000000000'],
            dtype='datetime64[ns]')
    • temperature
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      temperature
      standard_name :
      sea_water_potential_temperature
      units :
      kelvin
      valid_min :
      -5.0
      valid_max :
      45.0
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • salinity
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      salinity
      units :
      psu
      standard_name :
      sea_water_salinity
      valid_min :
      -5.0
      valid_max :
      48.0
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • temperature_uncertainty
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      temperature error standard deviation
      units :
      kelvin
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • salinity_uncertainty
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      salinity error standard deviation
      units :
      1
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • temperature_observation_weights
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      temperature observation weights
      comment :
      The total weighting given to the observation increments when forming the analysis
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • salinity_observation_weights
      (time, depth, lat, lon)
      float32
      dask.array<chunksize=(1, 42, 173, 360), meta=np.ndarray>
      long_name :
      salinity observation weights
      comment :
      The total weighting given to the observation increments when forming the analysis
      Array Chunk
      Bytes 14.94 GB 10.46 MB
      Shape (1428, 42, 173, 360) (1, 42, 173, 360)
      Count 4284 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      1428 1 360 173 42
    • time_bnds
      (time, bnds)
      datetime64[ns]
      dask.array<chunksize=(1, 2), meta=np.ndarray>
      Array Chunk
      Bytes 22.85 kB 16 B
      Shape (1428, 2) (1, 2)
      Count 4284 Tasks 1428 Chunks
      Type datetime64[ns] numpy.ndarray
      2 1428
    • depth_bnds
      (time, depth, bnds)
      float32
      dask.array<chunksize=(1, 42, 2), meta=np.ndarray>
      Array Chunk
      Bytes 479.81 kB 336 B
      Shape (1428, 42, 2) (1, 42, 2)
      Count 5712 Tasks 1428 Chunks
      Type float32 numpy.ndarray
      2 42 1428
  • Conventions :
    CF-1.0
    title :
    Temperature and salinity analysis
    DSD_entry_id :
    UKMO-L4UHFnd-GLOB-v01
    references :
    None
    institution :
    UK Met Office
    contact :
    Simon Good - simon.good@metoffice.gov.uk
    GDS_version_id :
    v1.7
    netcdf_version_id :
    3.5
    creation_date :
    2017-04-07 15:28:00.135 -00:00
    product_version :
    1.0
    history :
    grid_resolution :
    1.00000 degree
    start_date :
    2001-01-01 UTC
    start_time :
    00:00:00 UTC
    stop_date :
    2001-01-01 UTC
    stop_time :
    00:00:00 UTC
    southernmost_latitude :
    -90.5
    northernmost_latitude :
    89.5
    westernmost_longitude :
    0.5
    easternmost_longitude :
    362.5
    file_quality_index :
    0