MIROC4h model output prepared for CMIP5 10- or 30-year run initialized in year 1980
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/evap_OImon_MIROC4h_decadal1980_r3i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | MIROC4h model output prepared for CMIP5 10- or 30-year run initialized in year 1980 |
location | /shared/cmip5/data/decadal1980/seaIce/mon/OImon/evap/MIROC.MIROC4h/r3i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/evap_OImon_MIROC4h_decadal1980_r3i1p1.yaml |
last updated | 2013-05-26 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, rlat: 912, rlon: 1280, time: 360, vertices: 4) Coordinates: * time (time) float64 15.5 45.0 ... 1.091e+04 1.094e+04 * rlat (rlat) float64 -85.41 -85.22 ... 85.22 85.41 * rlon (rlon) float64 0.1406 0.4219 ... 359.6 359.9 lat (rlat, rlon) float32 dask.array<chunksize=(912, 1280), meta=np.ndarray> lon (rlat, rlon) float32 dask.array<chunksize=(912, 1280), meta=np.ndarray> Dimensions without coordinates: bnds, vertices Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray> rlat_bnds (time, rlat, bnds) float64 dask.array<chunksize=(120, 912, 2), meta=np.ndarray> rlon_bnds (time, rlon, bnds) float64 dask.array<chunksize=(120, 1280, 2), meta=np.ndarray> rotated_latitude_longitude (time) int32 -2147483647 ... -2147483647 lat_vertices (time, rlat, rlon, vertices) float32 dask.array<chunksize=(120, 912, 1280, 4), meta=np.ndarray> lon_vertices (time, rlat, rlon, vertices) float32 dask.array<chunksize=(120, 912, 1280, 4), meta=np.ndarray> evap (time, rlat, rlon) float32 dask.array<chunksize=(120, 912, 1280), meta=np.ndarray> Attributes: institution: AORI (Atmosphere and Ocean Research Institute, Th... institute_id: MIROC experiment_id: decadal1980 source: MIROC4h 2009 atmosphere: AGCM (AGCM5.8, T213L56);... model_id: MIROC4h forcing: GHG, SA, Oz, LU, Sl, Vl, SS, Ds, BC, MD, OC (GHG ... parent_experiment_id: N/A parent_experiment_rip: N/A branch_time: 0.0 contact: Masahide Kimoto (kimoto@aori.u-tokyo.ac.jp), Masa... references: Sakamoto et al., 2011: MIROC4h -- a new high-reso... initialization_method: 1 physics_version: 1 tracking_id: 779f826c-fe39-49e5-b677-00df0c20125a product: output experiment: 10- or 30-year run initialized in year 1980 frequency: mon creation_date: 2011-06-27T10:38:17Z history: 2011-06-27T10:38:17Z CMOR rewrote data to comply ... Conventions: CF-1.4 project_id: CMIP5 table_id: Table OImon (11 April 2011) c685058342b6615c12d34... title: MIROC4h model output prepared for CMIP5 10- or 30... parent_experiment: N/A modeling_realm: seaIce realization: 3 cmor_version: 2.5.8
xarray.Dataset
- bnds: 2
- rlat: 912
- rlon: 1280
- time: 360
- vertices: 4
- time(time)float6415.5 45.0 ... 1.091e+04 1.094e+04
- bounds :
- time_bnds
- units :
- days since 1981-1-1
- calendar :
- gregorian
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([ 15.5, 45. , 74.5, ..., 10880.5, 10911. , 10941.5])
- rlat(rlat)float64-85.41 -85.22 ... 85.22 85.41
- bounds :
- rlat_bnds
- units :
- degrees
- axis :
- Y
- long_name :
- latitude in rotated pole grid
- standard_name :
- grid_latitude
array([-85.40625, -85.21875, -85.03125, ..., 85.03125, 85.21875, 85.40625])
- rlon(rlon)float640.1406 0.4219 ... 359.6 359.9
- bounds :
- rlon_bnds
- units :
- degrees
- axis :
- X
- long_name :
- longitude in rotated pole grid
- standard_name :
- grid_longitude
array([1.406250e-01, 4.218750e-01, 7.031250e-01, ..., 3.592969e+02, 3.595781e+02, 3.598594e+02])
- lat(rlat, rlon)float32dask.array<chunksize=(912, 1280), meta=np.ndarray>
- standard_name :
- latitude
- long_name :
- latitude coordinate
- units :
- degrees_north
- bounds :
- lat_vertices
Array Chunk Bytes 4.67 MB 4.67 MB Shape (912, 1280) (912, 1280) Count 10 Tasks 1 Chunks Type float32 numpy.ndarray - lon(rlat, rlon)float32dask.array<chunksize=(912, 1280), meta=np.ndarray>
- standard_name :
- longitude
- long_name :
- longitude coordinate
- units :
- degrees_east
- bounds :
- lon_vertices
Array Chunk Bytes 4.67 MB 4.67 MB Shape (912, 1280) (912, 1280) Count 10 Tasks 1 Chunks Type float32 numpy.ndarray
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 5.76 kB 1.92 kB Shape (360, 2) (120, 2) Count 9 Tasks 3 Chunks Type float64 numpy.ndarray - rlat_bnds(time, rlat, bnds)float64dask.array<chunksize=(120, 912, 2), meta=np.ndarray>
Array Chunk Bytes 5.25 MB 1.75 MB Shape (360, 912, 2) (120, 912, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - rlon_bnds(time, rlon, bnds)float64dask.array<chunksize=(120, 1280, 2), meta=np.ndarray>
Array Chunk Bytes 7.37 MB 2.46 MB Shape (360, 1280, 2) (120, 1280, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - rotated_latitude_longitude(time)int32-2147483647 ... -2147483647
- grid_mapping_name :
- rotated_latitude_longitude
- grid_north_pole_latitude :
- 77.0
- grid_north_pole_longitude :
- -40.0
- north_pole_grid_longitude :
- 90.0
array([-2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, ... -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647, -2147483647], dtype=int32)
- lat_vertices(time, rlat, rlon, vertices)float32dask.array<chunksize=(120, 912, 1280, 4), meta=np.ndarray>
- units :
- degrees_north
Array Chunk Bytes 6.72 GB 2.24 GB Shape (360, 912, 1280, 4) (120, 912, 1280, 4) Count 12 Tasks 3 Chunks Type float32 numpy.ndarray - lon_vertices(time, rlat, rlon, vertices)float32dask.array<chunksize=(120, 912, 1280, 4), meta=np.ndarray>
- units :
- degrees_east
Array Chunk Bytes 6.72 GB 2.24 GB Shape (360, 912, 1280, 4) (120, 912, 1280, 4) Count 12 Tasks 3 Chunks Type float32 numpy.ndarray - evap(time, rlat, rlon)float32dask.array<chunksize=(120, 912, 1280), meta=np.ndarray>
- standard_name :
- water_evaporation_flux
- long_name :
- Water Evaporation Flux from Sea Ice
- comment :
- the average rate that water mass evaporates (or sublimates) from the sea ice surface (i.e., kg/s) divided by the area of the ocean (i.e., open ocean + sea ice) portion of the grid cell. This quantity, multiplied both by the oean area of the grid cell and by the length of the month, should yield the total mass of water evaporated (or sublimated) from the sea ice. Reported as 0.0 in regions free of sea ice. [This was computed differently in CMIP3.]
- units :
- kg m-2 s-1
- original_name :
- OWSB
- cell_methods :
- time: mean area: mean where sea_ice over sea
- cell_measures :
- area: areacello
- history :
- 2011-06-27T10:38:17Z altered by CMOR: replaced missing value flag (-999) with standard missing value (1e+20).
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_seaIce_fx_MIROC4h_decadal1980_r0i0p0.nc areacello: areacello_fx_MIROC4h_decadal1980_r0i0p0.nc
- grid_mapping :
- rotated_latitude_longitude
Array Chunk Bytes 1.68 GB 560.33 MB Shape (360, 912, 1280) (120, 912, 1280) Count 9 Tasks 3 Chunks Type float32 numpy.ndarray
- institution :
- AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan), NIES (National Institute for Environmental Studies, Ibaraki, Japan), and JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan)
- institute_id :
- MIROC
- experiment_id :
- decadal1980
- source :
- MIROC4h 2009 atmosphere: AGCM (AGCM5.8, T213L56); ocean: COCO (COCO3.4, rotated pole 1280x912 L48); sea ice: COCO (COCO3.4); land: MATSIRO (MATSIRO, 2x3L5)
- model_id :
- MIROC4h
- forcing :
- GHG, SA, Oz, LU, Sl, Vl, SS, Ds, BC, MD, OC (GHG includes CO2, N2O, methane, and fluorocarbons; Oz includes OH and H2O2)
- parent_experiment_id :
- N/A
- parent_experiment_rip :
- N/A
- branch_time :
- 0.0
- contact :
- Masahide Kimoto (kimoto@aori.u-tokyo.ac.jp), Masayoshi Ishii (ism@jamstec.go.jp)
- references :
- Sakamoto et al., 2011: MIROC4h -- a new high-resolution atmosphere-ocean coupled general circulation model. (in preparation); Tatebe et al., 2011: (in preparation)
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- 779f826c-fe39-49e5-b677-00df0c20125a
- product :
- output
- experiment :
- 10- or 30-year run initialized in year 1980
- frequency :
- mon
- creation_date :
- 2011-06-27T10:38:17Z
- history :
- 2011-06-27T10:38:17Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table OImon (11 April 2011) c685058342b6615c12d34dc34a53e6fa
- title :
- MIROC4h model output prepared for CMIP5 10- or 30-year run initialized in year 1980
- parent_experiment :
- N/A
- modeling_realm :
- seaIce
- realization :
- 3
- cmor_version :
- 2.5.8