GPCP Version 2.3 Combined Precipitation Dataset (Final)
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/gpcp.yaml")
ds=cat.netcdf.read()
Metadata
title | GPCP Version 2.3 Combined Precipitation Dataset (Final) |
location | /shared/obs/gridded/GPCP |
tags | gridded, obs, atm, precip, monthly, global |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/gpcp.yaml |
last updated | 2020-05-30 |
Dataset Contents
xarray.Dataset
- lat: 72
- lon: 144
- nv: 2
- time: 496
- lat(lat)float32-88.75 -86.25 ... 86.25 88.75
- units :
- degrees_north
- actual_range :
- [ 88.75 -88.75]
- long_name :
- Latitude
- standard_name :
- latitude
- axis :
- Y
array([-88.75, -86.25, -83.75, -81.25, -78.75, -76.25, -73.75, -71.25, -68.75, -66.25, -63.75, -61.25, -58.75, -56.25, -53.75, -51.25, -48.75, -46.25, -43.75, -41.25, -38.75, -36.25, -33.75, -31.25, -28.75, -26.25, -23.75, -21.25, -18.75, -16.25, -13.75, -11.25, -8.75, -6.25, -3.75, -1.25, 1.25, 3.75, 6.25, 8.75, 11.25, 13.75, 16.25, 18.75, 21.25, 23.75, 26.25, 28.75, 31.25, 33.75, 36.25, 38.75, 41.25, 43.75, 46.25, 48.75, 51.25, 53.75, 56.25, 58.75, 61.25, 63.75, 66.25, 68.75, 71.25, 73.75, 76.25, 78.75, 81.25, 83.75, 86.25, 88.75], dtype=float32)
- lon(lon)float321.25 3.75 6.25 ... 356.25 358.75
- units :
- degrees_east
- long_name :
- Longitude
- actual_range :
- [ 1.25 358.75]
- standard_name :
- longitude
- axis :
- X
array([ 1.25, 3.75, 6.25, 8.75, 11.25, 13.75, 16.25, 18.75, 21.25, 23.75, 26.25, 28.75, 31.25, 33.75, 36.25, 38.75, 41.25, 43.75, 46.25, 48.75, 51.25, 53.75, 56.25, 58.75, 61.25, 63.75, 66.25, 68.75, 71.25, 73.75, 76.25, 78.75, 81.25, 83.75, 86.25, 88.75, 91.25, 93.75, 96.25, 98.75, 101.25, 103.75, 106.25, 108.75, 111.25, 113.75, 116.25, 118.75, 121.25, 123.75, 126.25, 128.75, 131.25, 133.75, 136.25, 138.75, 141.25, 143.75, 146.25, 148.75, 151.25, 153.75, 156.25, 158.75, 161.25, 163.75, 166.25, 168.75, 171.25, 173.75, 176.25, 178.75, 181.25, 183.75, 186.25, 188.75, 191.25, 193.75, 196.25, 198.75, 201.25, 203.75, 206.25, 208.75, 211.25, 213.75, 216.25, 218.75, 221.25, 223.75, 226.25, 228.75, 231.25, 233.75, 236.25, 238.75, 241.25, 243.75, 246.25, 248.75, 251.25, 253.75, 256.25, 258.75, 261.25, 263.75, 266.25, 268.75, 271.25, 273.75, 276.25, 278.75, 281.25, 283.75, 286.25, 288.75, 291.25, 293.75, 296.25, 298.75, 301.25, 303.75, 306.25, 308.75, 311.25, 313.75, 316.25, 318.75, 321.25, 323.75, 326.25, 328.75, 331.25, 333.75, 336.25, 338.75, 341.25, 343.75, 346.25, 348.75, 351.25, 353.75, 356.25, 358.75], dtype=float32)
- time(time)datetime64[ns]1979-01-01 ... 2020-04-01
- long_name :
- Time
- delta_t :
- 0000-01-00 00:00:00
- avg_period :
- 0000-01-00 00:00:00
- standard_name :
- time
- axis :
- T
- actual_range :
- [65378. 80444.]
array(['1979-01-01T00:00:00.000000000', '1979-02-01T00:00:00.000000000', '1979-03-01T00:00:00.000000000', ..., '2020-02-01T00:00:00.000000000', '2020-03-01T00:00:00.000000000', '2020-04-01T00:00:00.000000000'], dtype='datetime64[ns]')
- time_bnds(time, nv)datetime64[ns]...
- comment :
- time bounds for each time value
array([['1979-01-01T00:00:00.000000000', '1979-02-01T00:00:00.000000000'], ['1979-02-01T00:00:00.000000000', '1979-03-01T00:00:00.000000000'], ['1979-03-01T00:00:00.000000000', '1979-04-01T00:00:00.000000000'], ..., ['2020-02-01T00:00:00.000000000', '2020-03-01T00:00:00.000000000'], ['2020-03-01T00:00:00.000000000', '2020-04-01T00:00:00.000000000'], ['2020-04-01T00:00:00.000000000', '2020-05-01T00:00:00.000000000']], dtype='datetime64[ns]')
- lat_bnds(lat, nv)float32...
- units :
- degrees_north
- comment :
- latitude values at the north and south bounds of each pixel.
array([[-90. , -87.5], [-87.5, -85. ], [-85. , -82.5], [-82.5, -80. ], [-80. , -77.5], [-77.5, -75. ], [-75. , -72.5], [-72.5, -70. ], [-70. , -67.5], [-67.5, -65. ], [-65. , -62.5], [-62.5, -60. ], [-60. , -57.5], [-57.5, -55. ], [-55. , -52.5], [-52.5, -50. ], [-50. , -47.5], [-47.5, -45. ], [-45. , -42.5], [-42.5, -40. ], [-40. , -37.5], [-37.5, -35. ], [-35. , -32.5], [-32.5, -30. ], [-30. , -27.5], [-27.5, -25. ], [-25. , -22.5], [-22.5, -20. ], [-20. , -17.5], [-17.5, -15. ], [-15. , -12.5], [-12.5, -10. ], [-10. , -7.5], [ -7.5, -5. ], [ -5. , -2.5], [ -2.5, 0. ], [ 0. , 2.5], [ 2.5, 5. ], [ 5. , 7.5], [ 7.5, 10. ], [ 10. , 12.5], [ 12.5, 15. ], [ 15. , 17.5], [ 17.5, 20. ], [ 20. , 22.5], [ 22.5, 25. ], [ 25. , 27.5], [ 27.5, 30. ], [ 30. , 32.5], [ 32.5, 35. ], [ 35. , 37.5], [ 37.5, 40. ], [ 40. , 42.5], [ 42.5, 45. ], [ 45. , 47.5], [ 47.5, 50. ], [ 50. , 52.5], [ 52.5, 55. ], [ 55. , 57.5], [ 57.5, 60. ], [ 60. , 62.5], [ 62.5, 65. ], [ 65. , 67.5], [ 67.5, 70. ], [ 70. , 72.5], [ 72.5, 75. ], [ 75. , 77.5], [ 77.5, 80. ], [ 80. , 82.5], [ 82.5, 85. ], [ 85. , 87.5], [ 87.5, 90. ]], dtype=float32)
- lon_bnds(lon, nv)float32...
- units :
- degrees_east
- comment :
- longitude values at the west and east bounds of each pixel.
array([[ 0. , 2.5], [ 2.5, 5. ], [ 5. , 7.5], ..., [352.5, 355. ], [355. , 357.5], [357.5, 360. ]], dtype=float32)
- precip(time, lat, lon)float32...
- long_name :
- Average Monthly Rate of Precipitation
- valid_range :
- [ 0. 100.]
- units :
- mm/day
- precision :
- 32767
- var_desc :
- Precipitation
- dataset :
- GPCP Version 2.3 Combined Precipitation Dataset
- level_desc :
- Surface
- statistic :
- Mean
- parent_stat :
- Mean
- actual_range :
- [ 0. 47.3274]
[5142528 values with dtype=float32]
- Conventions :
- CF-1.0
- curator :
- Dr. Jian-Jian Wang ESSIC, University of Maryland College Park College Park, MD 20742 USA Phone: +1 301-405-4887
- citation :
- Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979 - Present). J. Hydrometeor., 4(6), 1147-1167.
- title :
- GPCP Version 2.3 Combined Precipitation Dataset (Final)
- platform :
- NOAA POES (Polar Orbiting Environmental Satellites)
- source_obs :
- CDR RSS SSMI/SSMIS Tbs over ocean CDR SSMI/SSMIS rainrates over land (Ferraro) Geo-IR (Xie) calibrated by SSMI/SSMIS rainrates for sampling TOVS/AIRS empirical precipitation estimates at higher latitudes (ocean and land) GPCC gauge analysis to bias correct satellite estimates over land and merge with satellite based on sampling OLR Precipitation Index (OPI) (Xie) used for period before 1988
- documentation :
- http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
- version :
- V2.3
- Acknowledgement :
- contributor_name :
- Robert Adler University of Maryland George Huffman NASA Goddard Space Flight Center David Bolvin NASA Goddard Space Flight Center/SSAI Eric Nelkin NASA Goddard Space Flight Center/SSAI Udo Schneider GPCC, Deutscher Wetterdienst Andreas Becker GPCC, Deutscher Wetterdienst Long Chiu George Mason University Mathew Sapiano University of Maryland Pingping Xie Climate Prediction Center, NWS, NOAA Ralph Ferraro NESDIS, NOAA Jian-Jian Wang University of Maryland Guojun Gu University of Maryland
- dataset_title :
- Global Precipitation Climatology Project (GPCP) Monthly Analysis Product
- description :
- https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00970
- source :
- https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
- source_documentation :
- https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-monthly
- NCO :
- 4.6.9
- history :
- Generated at NOAA/ESRL PSD Sep 9 2016 based on data from source and stored in single netCDF4 file
- References :
- http://www.psl.noaa.gov/data/gridded/data.gpcp.html
- data_comment :
- Interim data covers 2020/03 through latest.