LEGATES
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/legates.yaml")
ds=cat.netcdf.read()
Metadata
title | LEGATES |
location | /shared/SWFluxCorr/LEGATES |
tags | gridded, obs, atm, precip, climo, global |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/legates.yaml |
last updated | 2017-07-01 |
Dataset Contents
xarray.Dataset
- lat: 64
- lon: 128
- time: 15
- lat(lat)float32-87.8638 -85.09653 ... 87.8638
- long_name :
- latitude
- units :
- degrees_north
array([-87.8638 , -85.09653, -82.31291, -79.52561, -76.7369 , -73.94752, -71.15775, -68.36776, -65.57761, -62.78735, -59.99702, -57.20663, -54.4162 , -51.62573, -48.83524, -46.04473, -43.25419, -40.46365, -37.67309, -34.88252, -32.09194, -29.30136, -26.51077, -23.72017, -20.92957, -18.13897, -15.34836, -12.55776, -9.76715, -6.97653, -4.18592, -1.39531, 1.39531, 4.18592, 6.97653, 9.76715, 12.55776, 15.34836, 18.13897, 20.92957, 23.72017, 26.51077, 29.30136, 32.09194, 34.88252, 37.67309, 40.46365, 43.25419, 46.04473, 48.83524, 51.62573, 54.4162 , 57.20663, 59.99702, 62.78735, 65.57761, 68.36776, 71.15775, 73.94752, 76.7369 , 79.52561, 82.31291, 85.09653, 87.8638 ], dtype=float32)
- lon(lon)float320.0 2.8125 ... 354.375 357.1875
- long_name :
- longitude
- units :
- degrees_east
array([ 0. , 2.8125, 5.625 , 8.4375, 11.25 , 14.0625, 16.875 , 19.6875, 22.5 , 25.3125, 28.125 , 30.9375, 33.75 , 36.5625, 39.375 , 42.1875, 45. , 47.8125, 50.625 , 53.4375, 56.25 , 59.0625, 61.875 , 64.6875, 67.5 , 70.3125, 73.125 , 75.9375, 78.75 , 81.5625, 84.375 , 87.1875, 90. , 92.8125, 95.625 , 98.4375, 101.25 , 104.0625, 106.875 , 109.6875, 112.5 , 115.3125, 118.125 , 120.9375, 123.75 , 126.5625, 129.375 , 132.1875, 135. , 137.8125, 140.625 , 143.4375, 146.25 , 149.0625, 151.875 , 154.6875, 157.5 , 160.3125, 163.125 , 165.9375, 168.75 , 171.5625, 174.375 , 177.1875, 180. , 182.8125, 185.625 , 188.4375, 191.25 , 194.0625, 196.875 , 199.6875, 202.5 , 205.3125, 208.125 , 210.9375, 213.75 , 216.5625, 219.375 , 222.1875, 225. , 227.8125, 230.625 , 233.4375, 236.25 , 239.0625, 241.875 , 244.6875, 247.5 , 250.3125, 253.125 , 255.9375, 258.75 , 261.5625, 264.375 , 267.1875, 270. , 272.8125, 275.625 , 278.4375, 281.25 , 284.0625, 286.875 , 289.6875, 292.5 , 295.3125, 298.125 , 300.9375, 303.75 , 306.5625, 309.375 , 312.1875, 315. , 317.8125, 320.625 , 323.4375, 326.25 , 329.0625, 331.875 , 334.6875, 337.5 , 340.3125, 343.125 , 345.9375, 348.75 , 351.5625, 354.375 , 357.1875], dtype=float32)
- time(time)float641.0 2.0 3.0 4.0 ... 6.0 5.0 7.0
- units :
- months
- long_name :
- climatological month
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 6., 5., 7.])
- gw(time, lat)float32dask.array<chunksize=(1, 64), meta=np.ndarray>
- long_name :
- gauss weights
Array Chunk Bytes 3.84 kB 256 B Shape (15, 64) (1, 64) Count 60 Tasks 15 Chunks Type float32 numpy.ndarray - ORO(time, lat, lon)float32dask.array<chunksize=(1, 64, 128), meta=np.ndarray>
- units :
- FLAG
- long_name :
- ocean (0), land (1), sea ice (2) flag
- time_op :
- instantaneous
Array Chunk Bytes 491.52 kB 32.77 kB Shape (15, 64, 128) (1, 64, 128) Count 45 Tasks 15 Chunks Type float32 numpy.ndarray - TREFHT(time, lat, lon)float32dask.array<chunksize=(1, 64, 128), meta=np.ndarray>
- source :
- Legates and Wilmott climatology 1920-1980 from NCAR climate analysis section on T42 grid
- units :
- K
- long_name :
- 2-meter temperature
Array Chunk Bytes 491.52 kB 32.77 kB Shape (15, 64, 128) (1, 64, 128) Count 45 Tasks 15 Chunks Type float32 numpy.ndarray - PRECT(time, lat, lon)float32dask.array<chunksize=(1, 64, 128), meta=np.ndarray>
- long_name :
- PRECT
- units :
Array Chunk Bytes 491.52 kB 32.77 kB Shape (15, 64, 128) (1, 64, 128) Count 45 Tasks 15 Chunks Type float32 numpy.ndarray
- Conventions :
- COARDS
- source :
- Data converted from CCM History Tape Format
- case :
- title :
- hybrid_sigma_pressure :
- Pressure at a grid point (lon(i),lat(j),lev(k)) is computed using the formula: p(i,j,k) = A(k)*PO + B(k)*PS(i,j) where A, B, PO, and PS are contained in the variables whose names are given by the attributes of the vertical coordinate variable A_var, B_var, P0_var, and PS_var respectively.
- history :
- Fri Jun 22 13:58:42 2001: ncrcat -C -A -v PRECT PT4201M2080.nc LEGATES_01_climo.nc Fri Jun 22 13:55:08 2001> ccm2nc -C LCT4201M2080.ccm PT4201M2080.nc