NOAA GFDL GFDL-ESM2G, pre-industrial control (run 1) experiment output for CMIP5 AR5
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/mrsos_Lmon_GFDL-ESM2G_piControl_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | NOAA GFDL GFDL-ESM2G, pre-industrial control (run 1) experiment output for CMIP5 AR5 |
location | /shared/cmip5/data/piControl/land/mon/Lmon/mrsos/NOAA-GFDL.GFDL-ESM2G/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/mrsos_Lmon_GFDL-ESM2G_piControl_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 90, lon: 144, time: 6000) Coordinates: * lat (lat) float64 -89.49 -87.98 -85.96 -83.93 ... 85.96 87.98 89.49 * lon (lon) float64 1.25 3.75 6.25 8.75 ... 351.3 353.8 356.2 358.8 * bnds (bnds) float64 1.0 2.0 * time (time) float64 15.5 45.0 74.5 ... 1.824e+05 1.825e+05 1.825e+05 depth float64 0.05 Data variables: average_DT (time) float64 dask.array<chunksize=(60,), meta=np.ndarray> average_T1 (time) float64 dask.array<chunksize=(60,), meta=np.ndarray> average_T2 (time) float64 dask.array<chunksize=(60,), meta=np.ndarray> mrsos (time, lat, lon) float32 dask.array<chunksize=(60, 90, 144), meta=np.ndarray> time_bnds (time, bnds) float64 dask.array<chunksize=(60, 2), meta=np.ndarray> depth_bnds (time, bnds) float64 dask.array<chunksize=(60, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(60, 90, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(60, 144, 2), meta=np.ndarray> Attributes: title: NOAA GFDL GFDL-ESM2G, pre-industrial control (run... institute_id: NOAA GFDL source: GFDL-ESM2G 2010 ocean: TOPAZ (TOPAZ1p2,Tripolar36... contact: gfdl.climate.model.info@noaa.gov project_id: CMIP5 table_id: Table Lmon (31 Jan 2011) experiment_id: piControl realization: 1 modeling_realm: land tracking_id: 95b22cee-e79d-4354-b9ee-995665bf4af8 Conventions: CF-1.4 references: The GFDL Data Portal (http://nomads.gfdl.noaa.gov... comment: GFDL experiment name = ESM2G_pi-control_C2. PCMDI... gfdl_experiment_name: ESM2G_pi-control_C2 creation_date: 2012-01-09T20:47:19Z model_id: GFDL-ESM2G branch_time: 0.0 experiment: pre-industrial control forcing: N/A frequency: mon initialization_method: 1 parent_experiment_id: N/A physics_version: 1 product: output1 institution: NOAA GFDL(201 Forrestal Rd, Princeton, NJ, 08540) history: File was processed by fremetar (GFDL analog of CM... parent_experiment_rip: N/A
xarray.Dataset
- bnds: 2
- lat: 90
- lon: 144
- time: 6000
- lat(lat)float64-89.49 -87.98 ... 87.98 89.49
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
- axis :
- Y
- bounds :
- lat_bnds
array([-89.494382, -87.977528, -85.955056, -83.932584, -81.910112, -79.88764 , -77.865169, -75.842697, -73.820225, -71.797753, -69.775281, -67.752809, -65.730337, -63.707865, -61.685393, -59.662921, -57.640449, -55.617978, -53.595506, -51.573034, -49.550562, -47.52809 , -45.505618, -43.483146, -41.460674, -39.438202, -37.41573 , -35.393258, -33.370787, -31.348315, -29.325843, -27.303371, -25.280899, -23.258427, -21.235955, -19.213483, -17.191011, -15.168539, -13.146067, -11.123596, -9.101124, -7.078652, -5.05618 , -3.033708, -1.011236, 1.011236, 3.033708, 5.05618 , 7.078652, 9.101124, 11.123596, 13.146067, 15.168539, 17.191011, 19.213483, 21.235955, 23.258427, 25.280899, 27.303371, 29.325843, 31.348315, 33.370787, 35.393258, 37.41573 , 39.438202, 41.460674, 43.483146, 45.505618, 47.52809 , 49.550562, 51.573034, 53.595506, 55.617978, 57.640449, 59.662921, 61.685393, 63.707865, 65.730337, 67.752809, 69.775281, 71.797753, 73.820225, 75.842697, 77.865169, 79.88764 , 81.910112, 83.932584, 85.955056, 87.977528, 89.494382])
- lon(lon)float641.25 3.75 6.25 ... 356.2 358.8
- long_name :
- longitude
- units :
- degrees_east
- standard_name :
- longitude
- axis :
- X
- bounds :
- lon_bnds
array([ 1.25, 3.75, 6.25, 8.75, 11.25, 13.75, 16.25, 18.75, 21.25, 23.75, 26.25, 28.75, 31.25, 33.75, 36.25, 38.75, 41.25, 43.75, 46.25, 48.75, 51.25, 53.75, 56.25, 58.75, 61.25, 63.75, 66.25, 68.75, 71.25, 73.75, 76.25, 78.75, 81.25, 83.75, 86.25, 88.75, 91.25, 93.75, 96.25, 98.75, 101.25, 103.75, 106.25, 108.75, 111.25, 113.75, 116.25, 118.75, 121.25, 123.75, 126.25, 128.75, 131.25, 133.75, 136.25, 138.75, 141.25, 143.75, 146.25, 148.75, 151.25, 153.75, 156.25, 158.75, 161.25, 163.75, 166.25, 168.75, 171.25, 173.75, 176.25, 178.75, 181.25, 183.75, 186.25, 188.75, 191.25, 193.75, 196.25, 198.75, 201.25, 203.75, 206.25, 208.75, 211.25, 213.75, 216.25, 218.75, 221.25, 223.75, 226.25, 228.75, 231.25, 233.75, 236.25, 238.75, 241.25, 243.75, 246.25, 248.75, 251.25, 253.75, 256.25, 258.75, 261.25, 263.75, 266.25, 268.75, 271.25, 273.75, 276.25, 278.75, 281.25, 283.75, 286.25, 288.75, 291.25, 293.75, 296.25, 298.75, 301.25, 303.75, 306.25, 308.75, 311.25, 313.75, 316.25, 318.75, 321.25, 323.75, 326.25, 328.75, 331.25, 333.75, 336.25, 338.75, 341.25, 343.75, 346.25, 348.75, 351.25, 353.75, 356.25, 358.75])
- bnds(bnds)float641.0 2.0
- long_name :
- vertex number
- cartesian_axis :
- N
array([1., 2.])
- time(time)float6415.5 45.0 ... 1.825e+05 1.825e+05
- long_name :
- time
- units :
- days since 0001-01-01 00:00:00
- cartesian_axis :
- T
- calendar_type :
- noleap
- calendar :
- noleap
- bounds :
- time_bnds
- standard_name :
- time
- axis :
- T
array([1.550000e+01, 4.500000e+01, 7.450000e+01, ..., 1.824235e+05, 1.824540e+05, 1.824845e+05])
- depth()float640.05
- units :
- m
- axis :
- Z
- positive :
- down
- long_name :
- depth
- standard_name :
- depth
- bounds :
- depth_bnds
- description :
- coordinate value for topmost 0.1 meter layer of soil
array(0.05)
- average_DT(time)float64dask.array<chunksize=(60,), meta=np.ndarray>
- long_name :
- Length of average period
- units :
- days
Array Chunk Bytes 48.00 kB 480 B Shape (6000,) (60,) Count 300 Tasks 100 Chunks Type float64 numpy.ndarray - average_T1(time)float64dask.array<chunksize=(60,), meta=np.ndarray>
- long_name :
- Start time for average period
- units :
- days since 0001-01-01 00:00:00
Array Chunk Bytes 48.00 kB 480 B Shape (6000,) (60,) Count 300 Tasks 100 Chunks Type float64 numpy.ndarray - average_T2(time)float64dask.array<chunksize=(60,), meta=np.ndarray>
- long_name :
- End time for average period
- units :
- days since 0001-01-01 00:00:00
Array Chunk Bytes 48.00 kB 480 B Shape (6000,) (60,) Count 300 Tasks 100 Chunks Type float64 numpy.ndarray - mrsos(time, lat, lon)float32dask.array<chunksize=(60, 90, 144), meta=np.ndarray>
- cell_methods :
- time: mean area: mean where land
- long_name :
- Moisture in Upper Portion of Soil Column
- original_name :
- SUM[1:3] of (soil_liq+soil_ice)*(soil_area/land_area)*dz
- original_units :
- kg/m3
- units :
- kg m-2
- comment :
- land_area = areacella * sftlf
- standard_name :
- moisture_content_of_soil_layer
- cell_measures :
- area: areacella
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation areacella: areacella_fx_GFDL-ESM2G_piControl_r0i0p0.nc sftlf: sftlf_fx_GFDL-ESM2G_piControl_r0i0p0.nc
Array Chunk Bytes 311.04 MB 3.11 MB Shape (6000, 90, 144) (60, 90, 144) Count 300 Tasks 100 Chunks Type float32 numpy.ndarray - time_bnds(time, bnds)float64dask.array<chunksize=(60, 2), meta=np.ndarray>
- long_name :
- time axis boundaries
- units :
- days since 0001-01-01 00:00:00
Array Chunk Bytes 96.00 kB 960 B Shape (6000, 2) (60, 2) Count 300 Tasks 100 Chunks Type float64 numpy.ndarray - depth_bnds(time, bnds)float64dask.array<chunksize=(60, 2), meta=np.ndarray>
Array Chunk Bytes 96.00 kB 960 B Shape (6000, 2) (60, 2) Count 400 Tasks 100 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(60, 90, 2), meta=np.ndarray>
Array Chunk Bytes 8.64 MB 86.40 kB Shape (6000, 90, 2) (60, 90, 2) Count 400 Tasks 100 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(60, 144, 2), meta=np.ndarray>
Array Chunk Bytes 13.82 MB 138.24 kB Shape (6000, 144, 2) (60, 144, 2) Count 400 Tasks 100 Chunks Type float64 numpy.ndarray
- title :
- NOAA GFDL GFDL-ESM2G, pre-industrial control (run 1) experiment output for CMIP5 AR5
- institute_id :
- NOAA GFDL
- source :
- GFDL-ESM2G 2010 ocean: TOPAZ (TOPAZ1p2,Tripolar360x210L63); atmosphere: AM2 (AM2p14,M45L24); sea ice: SIS (SISp2,Tripolar360x210L63); land: LM3 (LM3p7_cESM,M45)
- contact :
- gfdl.climate.model.info@noaa.gov
- project_id :
- CMIP5
- table_id :
- Table Lmon (31 Jan 2011)
- experiment_id :
- piControl
- realization :
- 1
- modeling_realm :
- land
- tracking_id :
- 95b22cee-e79d-4354-b9ee-995665bf4af8
- Conventions :
- CF-1.4
- references :
- The GFDL Data Portal (http://nomads.gfdl.noaa.gov/) provides access to NOAA/GFDL's publicly available model input and output data sets. From this web site one can view and download data sets and documentation, including those related to the GFDL coupled models experiments run for the IPCC's 5th Assessment Report and the US CCSP.
- comment :
- GFDL experiment name = ESM2G_pi-control_C2. PCMDI experiment name = pre-industrial control (run1). Initial conditions for this experiment were derived from a multi-step process involving a multi-century spin-up integration to allow both the physical climate system and the carbon cycle to come into a quasi-dynamic equilibrium with year 1860 radiative forcing. First, a dynamic vegetation and carbon cycle land only model was spun up with forcing agents obtained from a previous CM2.1 control integration at levels representative of 1860, and potential vegetation (i.e., no land use). Second, the spun up dynamic vegetation and carbon cycle land only model was coupled to an atmosphere model using Atmospheric Model Intercomparison Project (AMIP) protocols and spun up with using the monthly climatology of observed sea surface temperatures and sea ice concentrations averaged over the AMIP period. Third, an ocean + sea ice model was initialized from a zero-velocity state with temperature and salinity profiles derived from late 20th century observations (Levitus et al. 2005). The ocean + ice model was integrated for one year using atmospheric forcing also obtained from a previous CM2.1 control integration representative of 1860. The ESM was coupled to the ocean biogeochemistry component which uses observed fields of various chemically-active species. The fully-coupled ESM was initialized from the three steps above, and the radiative forcing was set back to 1860 conditions. The model was run for several centuries to adjust to those conditions. For the first 248 years of this spin-up integration, the physical climate was allowed to achieve a quasi-radiative equilibrium with the constant 1860 radiative forcing using potential, static vegetation and a fixed pCO2 value of 286 ppm, while a sponge was applied to the actual atmospheric CO2 values, restoring them back to 286 ppm to avoid drift. The criteria used to determine equilibrium for the physical climate was a TOA net radiative flux of less than +/- 0.1 W/m-2. At year 249 of the spin-up integration, dynamic vegetation was activated and the model was integrated for an additional 200 years after which time the land photosynthesis routine was allowed to feel the model's own atmospheric CO2. The atmospheric pCO2 was still restored to 286 ppm with a restoring time scale of about 1 year. After another ~150 years, the soil carbon was set to a quasi-equilibrium state using an offline analytic procedure and the ocean. At year 601, the temperature, salinity, and biogeochemical tracers in the ocean were reset to observations (Levitus et al. 2005) and changes to the mixing and diffusion parameterizations were introduced in order to address a deep-ocean cold bias. At years 1101 and 1401, changes were incorporated into the land vegetation model that resulted in an equilibrium total global biomass on land of ~850 PgC. The model integration was continued until the land and ocean carbon stores reached equilibrium. A net carbon flux of each component of less than 20 PgC per century and leading to net atmospheric response of less than 10 ppm per century was the criteria used for determining carbon equilibrium. Year 1 of the archived ESM2G_pi-control_C2 experiment data begins at the end of this adjustment period. ESM2G_pi-control_C2 forcing agents representative of conditions circa-1860 include the well-mixed greenhouse gases (CO2, CH4, N2O), tropospheric and stratospheric O3, tropospheric sulfates, black and organic carbon, dust, sea salt and solar irradiance. This integration did not include land use change (i.e., a "potential vegetation" integration). The direct effect of tropospheric aerosols is calculated by the model, but the model simulated no indirect aerosol effects.
- gfdl_experiment_name :
- ESM2G_pi-control_C2
- creation_date :
- 2012-01-09T20:47:19Z
- model_id :
- GFDL-ESM2G
- branch_time :
- 0.0
- experiment :
- pre-industrial control
- forcing :
- N/A
- frequency :
- mon
- initialization_method :
- 1
- parent_experiment_id :
- N/A
- physics_version :
- 1
- product :
- output1
- institution :
- NOAA GFDL(201 Forrestal Rd, Princeton, NJ, 08540)
- history :
- File was processed by fremetar (GFDL analog of CMOR). TripleID: [exper_id_bUomECD3dz,realiz_id_G7zr17eNlL,run_id_ShwLw7E1g6]
- parent_experiment_rip :
- N/A