MRI-AGCM3-2S model output prepared for CMIP5 AMIP
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/snc_LImon_MRI-AGCM3-2S_amip_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | MRI-AGCM3-2S model output prepared for CMIP5 AMIP |
location | /shared/cmip5/data/amip/landIce/mon/LImon/snc/MRI.MRI-AGCM3-2S/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/snc_LImon_MRI-AGCM3-2S_amip_r1i1p1.yaml |
last updated | 2013-05-26 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 960, lon: 1920, time: 360) Coordinates: * time (time) float64 15.5 45.0 74.5 ... 1.088e+04 1.091e+04 1.094e+04 * lat (lat) float64 -89.86 -89.67 -89.48 -89.3 ... 89.48 89.67 89.86 * lon (lon) float64 0.0 0.1875 0.375 0.5625 ... 359.2 359.4 359.6 359.8 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(120, 960, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(120, 1920, 2), meta=np.ndarray> snc (time, lat, lon) float32 dask.array<chunksize=(120, 960, 1920), meta=np.ndarray> Attributes: institution: MRI (Meteorological Research Institute, Tsukuba, ... institute_id: MRI experiment_id: amip source: MRI-AGCM3-2S 2009 (gsmuv-091102, TL959L64) model_id: MRI-AGCM3-2S forcing: GHG, Oz, SD, Vl, SS, BC, MD, OC parent_experiment_id: N/A parent_experiment_rip: N/A branch_time: 0.0 contact: Tomoaki Ose (tomoaose@mri-jma.go.jp) history: Output from /dias/groups/kakushin-a3-01-02/Global... references: Model described by Mizuta et al. (Journal of the ... initialization_method: 1 physics_version: 1 tracking_id: 9529859d-cc5a-4278-90de-970c3a886d63 product: output experiment: AMIP frequency: mon creation_date: 2011-08-05T12:11:45Z Conventions: CF-1.4 project_id: CMIP5 table_id: Table LImon (27 April 2011) 5a70adac85c24b52fe62c... title: MRI-AGCM3-2S model output prepared for CMIP5 AMIP parent_experiment: N/A modeling_realm: landIce land realization: 1 cmor_version: 2.7.1
xarray.Dataset
- bnds: 2
- lat: 960
- lon: 1920
- time: 360
- time(time)float6415.5 45.0 ... 1.091e+04 1.094e+04
- bounds :
- time_bnds
- units :
- days since 1979-01-01
- calendar :
- standard
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([ 15.5, 45. , 74.5, ..., 10881.5, 10912. , 10942.5])
- lat(lat)float64-89.86 -89.67 ... 89.67 89.86
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-89.857, -89.671, -89.484, ..., 89.484, 89.671, 89.857])
- lon(lon)float640.0 0.1875 0.375 ... 359.6 359.8
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([0.000000e+00, 1.875000e-01, 3.750000e-01, ..., 3.594375e+02, 3.596250e+02, 3.598125e+02])
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 5.76 kB 1.92 kB Shape (360, 2) (120, 2) Count 9 Tasks 3 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(120, 960, 2), meta=np.ndarray>
Array Chunk Bytes 5.53 MB 1.84 MB Shape (360, 960, 2) (120, 960, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(120, 1920, 2), meta=np.ndarray>
Array Chunk Bytes 11.06 MB 3.69 MB Shape (360, 1920, 2) (120, 1920, 2) Count 12 Tasks 3 Chunks Type float64 numpy.ndarray - snc(time, lat, lon)float32dask.array<chunksize=(120, 960, 1920), meta=np.ndarray>
- standard_name :
- surface_snow_area_fraction
- long_name :
- Snow Area Fraction
- comment :
- Fraction of each grid cell that is occupied by snow that rests on land portion of cell.
- units :
- %
- original_name :
- CVRSNWA*100.0
- cell_methods :
- time: mean
- cell_measures :
- area: areacella
- history :
- 2011-08-05T12:11:45Z altered by CMOR: replaced missing value flag (-9.99e+33) with standard missing value (1e+20).
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_landIce_fx_MRI-AGCM3-2S_amip_r0i0p0.nc areacella: areacella_fx_MRI-AGCM3-2S_amip_r0i0p0.nc
Array Chunk Bytes 2.65 GB 884.74 MB Shape (360, 960, 1920) (120, 960, 1920) Count 9 Tasks 3 Chunks Type float32 numpy.ndarray
- institution :
- MRI (Meteorological Research Institute, Tsukuba, Japan)
- institute_id :
- MRI
- experiment_id :
- amip
- source :
- MRI-AGCM3-2S 2009 (gsmuv-091102, TL959L64)
- model_id :
- MRI-AGCM3-2S
- forcing :
- GHG, Oz, SD, Vl, SS, BC, MD, OC
- parent_experiment_id :
- N/A
- parent_experiment_rip :
- N/A
- branch_time :
- 0.0
- contact :
- Tomoaki Ose (tomoaose@mri-jma.go.jp)
- history :
- Output from /dias/groups/kakushin-a3-01-02/Global/SPA/sfc_avr_mon.ctl 2011-08-05T12:11:45Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- references :
- Model described by Mizuta et al. (Journal of the Meteorological Society of Japan, 2011, submitted)
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- 9529859d-cc5a-4278-90de-970c3a886d63
- product :
- output
- experiment :
- AMIP
- frequency :
- mon
- creation_date :
- 2011-08-05T12:11:45Z
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table LImon (27 April 2011) 5a70adac85c24b52fe62c758c1dca0e5
- title :
- MRI-AGCM3-2S model output prepared for CMIP5 AMIP
- parent_experiment :
- N/A
- modeling_realm :
- landIce land
- realization :
- 1
- cmor_version :
- 2.7.1