CanESM2 model output prepared for CMIP5 pre-industrial control
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/snd_LImon_CanESM2_piControl_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | CanESM2 model output prepared for CMIP5 pre-industrial control |
location | /shared/cmip5/data/piControl/landIce/mon/LImon/snd/CCCma.CanESM2/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/snd_LImon_CanESM2_piControl_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lat: 64, lon: 128, time: 11952) Coordinates: * time (time) float64 6.024e+04 6.027e+04 ... 4.237e+05 4.237e+05 * lat (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86 * lon (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(3552, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(3552, 64, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(3552, 128, 2), meta=np.ndarray> snd (time, lat, lon) float32 dask.array<chunksize=(3552, 64, 128), meta=np.ndarray> Attributes: institution: CCCma (Canadian Centre for Climate Modelling and ... institute_id: CCCma experiment_id: piControl source: CanESM2 2010 atmosphere: CanAM4 (AGCM15i, T63L35)... model_id: CanESM2 forcing: N/A parent_experiment_id: N/A parent_experiment_rip: N/A branch_time: 0.0 contact: cccma_info@ec.gc.ca references: http://www.cccma.ec.gc.ca/models initialization_method: 1 physics_version: 1 tracking_id: 09cb9a5a-824a-453e-8d2f-dd1ac1169a95 branch_time_YMDH: 2015:01:01:00 CCCma_runid: IGA CCCma_parent_runid: IBA CCCma_data_licence: 1) GRANT OF LICENCE - The Government of Canada (E... product: output experiment: pre-industrial control frequency: mon creation_date: 2011-03-17T21:53:26Z history: 2011-03-17T21:53:26Z CMOR rewrote data to comply ... Conventions: CF-1.4 project_id: CMIP5 table_id: Table LImon (31 January 2011) 6f05b7e5f64aaa34bca... title: CanESM2 model output prepared for CMIP5 pre-indus... parent_experiment: N/A modeling_realm: landIce land realization: 1 cmor_version: 2.5.4
xarray.Dataset
- bnds: 2
- lat: 64
- lon: 128
- time: 11952
- time(time)float646.024e+04 6.027e+04 ... 4.237e+05
- bounds :
- time_bnds
- units :
- days since 1850-1-1
- calendar :
- 365_day
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([ 60240.5, 60270. , 60299.5, ..., 423688.5, 423719. , 423749.5])
- lat(lat)float64-87.86 -85.1 -82.31 ... 85.1 87.86
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
array([-87.863801, -85.096529, -82.312915, -79.525609, -76.736902, -73.947518, -71.157755, -68.367759, -65.57761 , -62.787354, -59.997023, -57.206634, -54.416202, -51.625736, -48.835243, -46.044729, -43.254197, -40.463651, -37.673092, -34.882523, -32.091946, -29.301362, -26.510772, -23.720176, -20.929577, -18.138973, -15.348367, -12.557759, -9.767148, -6.976536, -4.185923, -1.395309, 1.395309, 4.185923, 6.976536, 9.767148, 12.557759, 15.348367, 18.138973, 20.929577, 23.720176, 26.510772, 29.301362, 32.091946, 34.882523, 37.673092, 40.463651, 43.254197, 46.044729, 48.835243, 51.625736, 54.416202, 57.206634, 59.997023, 62.787354, 65.57761 , 68.367759, 71.157755, 73.947518, 76.736902, 79.525609, 82.312915, 85.096529, 87.863801])
- lon(lon)float640.0 2.812 5.625 ... 354.4 357.2
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
array([ 0. , 2.8125, 5.625 , 8.4375, 11.25 , 14.0625, 16.875 , 19.6875, 22.5 , 25.3125, 28.125 , 30.9375, 33.75 , 36.5625, 39.375 , 42.1875, 45. , 47.8125, 50.625 , 53.4375, 56.25 , 59.0625, 61.875 , 64.6875, 67.5 , 70.3125, 73.125 , 75.9375, 78.75 , 81.5625, 84.375 , 87.1875, 90. , 92.8125, 95.625 , 98.4375, 101.25 , 104.0625, 106.875 , 109.6875, 112.5 , 115.3125, 118.125 , 120.9375, 123.75 , 126.5625, 129.375 , 132.1875, 135. , 137.8125, 140.625 , 143.4375, 146.25 , 149.0625, 151.875 , 154.6875, 157.5 , 160.3125, 163.125 , 165.9375, 168.75 , 171.5625, 174.375 , 177.1875, 180. , 182.8125, 185.625 , 188.4375, 191.25 , 194.0625, 196.875 , 199.6875, 202.5 , 205.3125, 208.125 , 210.9375, 213.75 , 216.5625, 219.375 , 222.1875, 225. , 227.8125, 230.625 , 233.4375, 236.25 , 239.0625, 241.875 , 244.6875, 247.5 , 250.3125, 253.125 , 255.9375, 258.75 , 261.5625, 264.375 , 267.1875, 270. , 272.8125, 275.625 , 278.4375, 281.25 , 284.0625, 286.875 , 289.6875, 292.5 , 295.3125, 298.125 , 300.9375, 303.75 , 306.5625, 309.375 , 312.1875, 315. , 317.8125, 320.625 , 323.4375, 326.25 , 329.0625, 331.875 , 334.6875, 337.5 , 340.3125, 343.125 , 345.9375, 348.75 , 351.5625, 354.375 , 357.1875])
- time_bnds(time, bnds)float64dask.array<chunksize=(3552, 2), meta=np.ndarray>
Array Chunk Bytes 191.23 kB 56.83 kB Shape (11952, 2) (3552, 2) Count 24 Tasks 8 Chunks Type float64 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(3552, 64, 2), meta=np.ndarray>
Array Chunk Bytes 12.24 MB 3.64 MB Shape (11952, 64, 2) (3552, 64, 2) Count 32 Tasks 8 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(3552, 128, 2), meta=np.ndarray>
Array Chunk Bytes 24.48 MB 7.27 MB Shape (11952, 128, 2) (3552, 128, 2) Count 32 Tasks 8 Chunks Type float64 numpy.ndarray - snd(time, lat, lon)float32dask.array<chunksize=(3552, 64, 128), meta=np.ndarray>
- standard_name :
- surface_snow_thickness
- long_name :
- Snow Depth
- comment :
- where land over land, this is computed as the mean thickness of snow in the land portion of the grid cell (averaging over the entire land portion, including the snow-free fraction). Reported as 0.0 where the land fraction is 0.
- units :
- m
- original_name :
- ZN
- cell_methods :
- time: mean (interval: 15 minutes) area: mean where land
- cell_measures :
- area: areacella
- history :
- 2011-03-17T21:53:26Z altered by CMOR: replaced missing value flag (1e+38) with standard missing value (1e+20).
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_landIce_fx_CanESM2_piControl_r0i0p0.nc areacella: areacella_fx_CanESM2_piControl_r0i0p0.nc
Array Chunk Bytes 391.64 MB 116.39 MB Shape (11952, 64, 128) (3552, 64, 128) Count 24 Tasks 8 Chunks Type float32 numpy.ndarray
- institution :
- CCCma (Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada)
- institute_id :
- CCCma
- experiment_id :
- piControl
- source :
- CanESM2 2010 atmosphere: CanAM4 (AGCM15i, T63L35) ocean: CanOM4 (OGCM4.0, 256x192L40) and CMOC1.2 sea ice: CanSIM1 (Cavitating Fluid, T63 Gaussian Grid) land: CLASS2.7 and CTEM1
- model_id :
- CanESM2
- forcing :
- N/A
- parent_experiment_id :
- N/A
- parent_experiment_rip :
- N/A
- branch_time :
- 0.0
- contact :
- cccma_info@ec.gc.ca
- references :
- http://www.cccma.ec.gc.ca/models
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- 09cb9a5a-824a-453e-8d2f-dd1ac1169a95
- branch_time_YMDH :
- 2015:01:01:00
- CCCma_runid :
- IGA
- CCCma_parent_runid :
- IBA
- CCCma_data_licence :
- 1) GRANT OF LICENCE - The Government of Canada (Environment Canada) is the owner of all intellectual property rights (including copyright) that may exist in this Data product. You (as "The Licensee") are hereby granted a non-exclusive, non-assignable, non-transferable unrestricted licence to use this data product for any purpose including the right to share these data with others and to make value-added and derivative products from it. This licence is not a sale of any or all of the owner's rights. 2) NO WARRANTY - This Data product is provided "as-is"; it has not been designed or prepared to meet the Licensee's particular requirements. Environment Canada makes no warranty, either express or implied, including but not limited to, warranties of merchantability and fitness for a particular purpose. In no event will Environment Canada be liable for any indirect, special, consequential or other damages attributed to the Licensee's use of the Data product.
- product :
- output
- experiment :
- pre-industrial control
- frequency :
- mon
- creation_date :
- 2011-03-17T21:53:26Z
- history :
- 2011-03-17T21:53:26Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table LImon (31 January 2011) 6f05b7e5f64aaa34bcac127ca47ac655
- title :
- CanESM2 model output prepared for CMIP5 pre-industrial control
- parent_experiment :
- N/A
- modeling_realm :
- landIce land
- realization :
- 1
- cmor_version :
- 2.5.4