ACCESS-ESM1-5 output prepared for CMIP6
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_ACCESS-ESM1-5_piControl_r1i1p1f1_gn.yaml")
ds=cat.netcdf.read()
        Metadata
| title | ACCESS-ESM1-5 output prepared for CMIP6 | 
| location | /shared/cmip6/data/piControl/ocean/mon/Omon/thetao/CSIRO.ACCESS-ESM1-5/r1i1p1 | 
| tags | gridded,global,model,monthly | 
| catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_ACCESS-ESM1-5_piControl_r1i1p1f1_gn.yaml | 
| last updated | 2020-09-24 | 
Dataset Contents
<xarray.Dataset>
Dimensions:             (bnds: 2, i: 360, j: 300, lev: 50, time: 10800, vertices: 4)
Coordinates:
  * time                (time) float64 15.5 45.0 74.5 ... 3.287e+05 3.287e+05
  * lev                 (lev) float64 5.0 15.0 25.0 ... 5.499e+03 5.831e+03
  * j                   (j) int32 0 1 2 3 4 5 6 ... 293 294 295 296 297 298 299
  * i                   (i) int32 0 1 2 3 4 5 6 ... 353 354 355 356 357 358 359
    latitude            (j, i) float64 dask.array<chunksize=(300, 360), meta=np.ndarray>
    longitude           (j, i) float64 dask.array<chunksize=(300, 360), meta=np.ndarray>
Dimensions without coordinates: bnds, vertices
Data variables:
    time_bnds           (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray>
    lev_bnds            (time, lev, bnds) float64 dask.array<chunksize=(120, 50, 2), meta=np.ndarray>
    vertices_latitude   (time, j, i, vertices) float64 dask.array<chunksize=(120, 300, 360, 4), meta=np.ndarray>
    vertices_longitude  (time, j, i, vertices) float64 dask.array<chunksize=(120, 300, 360, 4), meta=np.ndarray>
    thetao              (time, lev, j, i) float32 dask.array<chunksize=(120, 50, 300, 360), meta=np.ndarray>
Attributes:
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    branch_method:          standard
    branch_time_in_child:   0.0
    branch_time_in_parent:  36524.0
    creation_date:          2019-11-12T22:25:52Z
    data_specs_version:     01.00.30
    experiment:             pre-industrial control
    experiment_id:          piControl
    external_variables:     areacello volcello
    forcing_index:          1
    frequency:              mon
    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.CSIRO.ACCESS...
    grid:                   native atmosphere N96 grid (145x192 latxlon)
    grid_label:             gn
    history:                2019-11-12T22:25:52Z ; CMOR rewrote data to be co...
    initialization_index:   1
    institution:            Commonwealth Scientific and Industrial Research O...
    institution_id:         CSIRO
    mip_era:                CMIP6
    nominal_resolution:     250 km
    notes:                  Exp: ESM-piControl; Local ID: PI-01; Variable: th...
    parent_activity_id:     CMIP
    parent_experiment_id:   piControl-spinup
    parent_mip_era:         CMIP6
    parent_source_id:       ACCESS-ESM1-5
    parent_time_units:      days since 0001-01-01
    parent_variant_label:   r1i1p1f1
    physics_index:          1
    product:                model-output
    realization_index:      1
    realm:                  ocean
    run_variant:            forcing: GHG, Oz, SA, Sl, Vl, BC, OC, (GHG = CO2,...
    source:                 ACCESS-ESM1.5 (2019): 
aerosol: CLASSIC (v1.0)
...
    source_id:              ACCESS-ESM1-5
    source_type:            AOGCM
    sub_experiment:         none
    sub_experiment_id:      none
    table_id:               Omon
    table_info:             Creation Date:(30 April 2019) MD5:e14f55f257cceaf...
    title:                  ACCESS-ESM1-5 output prepared for CMIP6
    variable_id:            thetao
    variant_label:          r1i1p1f1
    version:                v20191112
    cmor_version:           3.4.0
    tracking_id:            hdl:21.14100/d975eb01-bf97-4830-afea-6b97d07920dc
    license:                CMIP6 model data produced by CSIRO is licensed un...xarray.Dataset
- bnds: 2
 - i: 360
 - j: 300
 - lev: 50
 - time: 10800
 - vertices: 4
 
- time(time)float6415.5 45.0 ... 3.287e+05 3.287e+05
- bounds :
 - time_bnds
 - units :
 - days since 101-01-01
 - calendar :
 - proleptic_gregorian
 - axis :
 - T
 - long_name :
 - time
 - standard_name :
 - time
 
array([1.550000e+01, 4.500000e+01, 7.450000e+01, ..., 3.286415e+05, 3.286720e+05, 3.287025e+05]) - lev(lev)float645.0 15.0 ... 5.499e+03 5.831e+03
- bounds :
 - lev_bnds
 - units :
 - m
 - axis :
 - Z
 - positive :
 - down
 - long_name :
 - ocean depth coordinate
 - standard_name :
 - depth
 
array([5.000000e+00, 1.500000e+01, 2.500000e+01, 3.500000e+01, 4.500000e+01, 5.500000e+01, 6.500000e+01, 7.500000e+01, 8.500000e+01, 9.500000e+01, 1.050000e+02, 1.150000e+02, 1.250000e+02, 1.350000e+02, 1.450000e+02, 1.550000e+02, 1.650000e+02, 1.750000e+02, 1.850000e+02, 1.950000e+02, 2.050000e+02, 2.168468e+02, 2.413490e+02, 2.807807e+02, 3.432505e+02, 4.273156e+02, 5.367156e+02, 6.654141e+02, 8.127816e+02, 9.690651e+02, 1.130935e+03, 1.289605e+03, 1.455770e+03, 1.622926e+03, 1.801558e+03, 1.984855e+03, 2.182905e+03, 2.388417e+03, 2.610935e+03, 2.842564e+03, 3.092205e+03, 3.351295e+03, 3.628058e+03, 3.913264e+03, 4.214495e+03, 4.521918e+03, 4.842566e+03, 5.166130e+03, 5.499245e+03, 5.831294e+03]) - j(j)int320 1 2 3 4 5 ... 295 296 297 298 299
- units :
 - 1
 - long_name :
 - cell index along second dimension
 
array([ 0, 1, 2, ..., 297, 298, 299], dtype=int32)
 - i(i)int320 1 2 3 4 5 ... 355 356 357 358 359
- units :
 - 1
 - long_name :
 - cell index along first dimension
 
array([ 0, 1, 2, ..., 357, 358, 359], dtype=int32)
 - latitude(j, i)float64dask.array<chunksize=(300, 360), meta=np.ndarray>
- standard_name :
 - latitude
 - long_name :
 - latitude
 - units :
 - degrees_north
 - bounds :
 - vertices_latitude
 
Array Chunk Bytes 864.00 kB 864.00 kB Shape (300, 360) (300, 360) Count 445 Tasks 1 Chunks Type float64 numpy.ndarray  - longitude(j, i)float64dask.array<chunksize=(300, 360), meta=np.ndarray>
- standard_name :
 - longitude
 - long_name :
 - longitude
 - units :
 - degrees_east
 - bounds :
 - vertices_longitude
 
Array Chunk Bytes 864.00 kB 864.00 kB Shape (300, 360) (300, 360) Count 445 Tasks 1 Chunks Type float64 numpy.ndarray  
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 172.80 kB 1.92 kB Shape (10800, 2) (120, 2) Count 270 Tasks 90 Chunks Type float64 numpy.ndarray  - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 50, 2), meta=np.ndarray>
Array Chunk Bytes 8.64 MB 96.00 kB Shape (10800, 50, 2) (120, 50, 2) Count 360 Tasks 90 Chunks Type float64 numpy.ndarray  - vertices_latitude(time, j, i, vertices)float64dask.array<chunksize=(120, 300, 360, 4), meta=np.ndarray>
- units :
 - degrees_north
 
Array Chunk Bytes 37.32 GB 414.72 MB Shape (10800, 300, 360, 4) (120, 300, 360, 4) Count 360 Tasks 90 Chunks Type float64 numpy.ndarray  - vertices_longitude(time, j, i, vertices)float64dask.array<chunksize=(120, 300, 360, 4), meta=np.ndarray>
- units :
 - degrees_east
 
Array Chunk Bytes 37.32 GB 414.72 MB Shape (10800, 300, 360, 4) (120, 300, 360, 4) Count 360 Tasks 90 Chunks Type float64 numpy.ndarray  - thetao(time, lev, j, i)float32dask.array<chunksize=(120, 50, 300, 360), meta=np.ndarray>
- standard_name :
 - sea_water_potential_temperature
 - long_name :
 - Sea Water Potential Temperature
 - comment :
 - Diagnostic should be contributed even for models using conservative temperature as prognostic field.
 - units :
 - degC
 - cell_methods :
 - area: mean where sea time: mean
 - cell_measures :
 - area: areacello volume: volcello
 - history :
 - 2019-11-12T22:25:49Z altered by CMOR: replaced missing value flag (-1e+20) with standard missing value (1e+20).
 
Array Chunk Bytes 233.28 GB 2.59 GB Shape (10800, 50, 300, 360) (120, 50, 300, 360) Count 270 Tasks 90 Chunks Type float32 numpy.ndarray  
- Conventions :
 - CF-1.7 CMIP-6.2
 - activity_id :
 - CMIP
 - branch_method :
 - standard
 - branch_time_in_child :
 - 0.0
 - branch_time_in_parent :
 - 36524.0
 - creation_date :
 - 2019-11-12T22:25:52Z
 - data_specs_version :
 - 01.00.30
 - experiment :
 - pre-industrial control
 - experiment_id :
 - piControl
 - external_variables :
 - areacello volcello
 - forcing_index :
 - 1
 - frequency :
 - mon
 - further_info_url :
 - https://furtherinfo.es-doc.org/CMIP6.CSIRO.ACCESS-ESM1-5.piControl.none.r1i1p1f1
 - grid :
 - native atmosphere N96 grid (145x192 latxlon)
 - grid_label :
 - gn
 - history :
 - 2019-11-12T22:25:52Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
 - initialization_index :
 - 1
 - institution :
 - Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia
 - institution_id :
 - CSIRO
 - mip_era :
 - CMIP6
 - nominal_resolution :
 - 250 km
 - notes :
 - Exp: ESM-piControl; Local ID: PI-01; Variable: thetao (['pot_temp'])
 - parent_activity_id :
 - CMIP
 - parent_experiment_id :
 - piControl-spinup
 - parent_mip_era :
 - CMIP6
 - parent_source_id :
 - ACCESS-ESM1-5
 - parent_time_units :
 - days since 0001-01-01
 - parent_variant_label :
 - r1i1p1f1
 - physics_index :
 - 1
 - product :
 - model-output
 - realization_index :
 - 1
 - realm :
 - ocean
 - run_variant :
 - forcing: GHG, Oz, SA, Sl, Vl, BC, OC, (GHG = CO2, N2O, CH4, CFC11, CFC12, CFC113, HCFC22, HFC125, HFC134a)
 - source :
 - ACCESS-ESM1.5 (2019): aerosol: CLASSIC (v1.0) atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m) atmosChem: none land: CABLE2.4 landIce: none ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m) ocnBgchem: WOMBAT (same grid as ocean) seaIce: CICE4.1 (same grid as ocean)
 - source_id :
 - ACCESS-ESM1-5
 - source_type :
 - AOGCM
 - sub_experiment :
 - none
 - sub_experiment_id :
 - none
 - table_id :
 - Omon
 - table_info :
 - Creation Date:(30 April 2019) MD5:e14f55f257cceafb2523e41244962371
 - title :
 - ACCESS-ESM1-5 output prepared for CMIP6
 - variable_id :
 - thetao
 - variant_label :
 - r1i1p1f1
 - version :
 - v20191112
 - cmor_version :
 - 3.4.0
 - tracking_id :
 - hdl:21.14100/d975eb01-bf97-4830-afea-6b97d07920dc
 - license :
 - CMIP6 model data produced by CSIRO is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file). The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
 
