CCSM4 model output prepared for CMIP5 pre-industrial control
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CCSM4_piControl_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | CCSM4 model output prepared for CMIP5 pre-industrial control |
location | /shared/cmip5/data/piControl/ocean/mon/Omon/thetao/NCAR.CCSM4/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CCSM4_piControl_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, i: 320, j: 384, lev: 60, time: 6012, vertices: 4) Coordinates: * time (time) float64 2.92e+05 2.92e+05 ... 4.748e+05 4.748e+05 * lev (lev) float64 5.0 15.0 25.0 ... 4.875e+03 5.125e+03 5.375e+03 * j (j) int32 1 2 3 4 5 6 7 8 ... 377 378 379 380 381 382 383 384 * i (i) int32 1 2 3 4 5 6 7 8 ... 313 314 315 316 317 318 319 320 lat (j, i) float32 dask.array<chunksize=(384, 320), meta=np.ndarray> lon (j, i) float32 dask.array<chunksize=(384, 320), meta=np.ndarray> Dimensions without coordinates: bnds, vertices Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(120, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(120, 60, 2), meta=np.ndarray> lat_vertices (time, j, i, vertices) float32 dask.array<chunksize=(120, 384, 320, 4), meta=np.ndarray> lon_vertices (time, j, i, vertices) float32 dask.array<chunksize=(120, 384, 320, 4), meta=np.ndarray> thetao (time, lev, j, i) float32 dask.array<chunksize=(120, 60, 384, 320), meta=np.ndarray> Attributes: institution: NCAR (National Center for Atmospheric Resea... institute_id: NCAR experiment_id: piControl source: CCSM4 model_id: CCSM4 forcing: Sl GHG Vl SS Ds SA BC MD OC Oz AA parent_experiment_id: N/A parent_experiment_rip: N/A branch_time: 0.0 contact: cesm_data@ucar.edu references: Gent P. R., et.al. 2011: The Community Clim... initialization_method: 1 physics_version: 1 tracking_id: 40090eca-a6c2-432c-94ee-e58bf72efe5a acknowledgements: The CESM project is supported by the Nation... cesm_casename: b40.1850.track1.1deg.006 cesm_repotag: ccsm4_0_beta23 cesm_compset: B1850TR1CN resolution: f09_g16 (0.9x1.25_gx1v6) forcing_note: Additional information on the external forc... processed_by: strandwg on copper.cgd.ucar.edu at 20111129... processing_code_information: Last Changed Rev: 472 Last Changed Date: 20... product: output experiment: pre-industrial control frequency: mon creation_date: 2011-11-29T21:51:13Z history: 2011-11-29T21:51:13Z CMOR rewrote data to c... Conventions: CF-1.4 project_id: CMIP5 table_id: Table Omon (26 July 2011) 25bb94a0408beca44... title: CCSM4 model output prepared for CMIP5 pre-i... parent_experiment: N/A modeling_realm: ocean realization: 1 cmor_version: 2.7.1
xarray.Dataset
- bnds: 2
- i: 320
- j: 384
- lev: 60
- time: 6012
- vertices: 4
- time(time)float642.92e+05 2.92e+05 ... 4.748e+05
- bounds :
- time_bnds
- units :
- days since 0000-01-01 00:00:00
- calendar :
- noleap
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([292015. , 292045. , 292074.5, ..., 474788.5, 474819. , 474849.5])
- lev(lev)float645.0 15.0 ... 5.125e+03 5.375e+03
- bounds :
- lev_bnds
- units :
- m
- axis :
- Z
- positive :
- down
- long_name :
- ocean depth coordinate
- standard_name :
- depth
array([5.000000e+00, 1.500000e+01, 2.500000e+01, 3.500000e+01, 4.500000e+01, 5.500000e+01, 6.500000e+01, 7.500000e+01, 8.500000e+01, 9.500000e+01, 1.050000e+02, 1.150000e+02, 1.250000e+02, 1.350000e+02, 1.450000e+02, 1.550000e+02, 1.650984e+02, 1.754790e+02, 1.862913e+02, 1.976603e+02, 2.097114e+02, 2.225783e+02, 2.364088e+02, 2.513702e+02, 2.676542e+02, 2.854837e+02, 3.051192e+02, 3.268680e+02, 3.510935e+02, 3.782276e+02, 4.087846e+02, 4.433777e+02, 4.827367e+02, 5.277280e+02, 5.793729e+02, 6.388626e+02, 7.075633e+02, 7.870025e+02, 8.788252e+02, 9.847059e+02, 1.106204e+03, 1.244567e+03, 1.400497e+03, 1.573946e+03, 1.764003e+03, 1.968944e+03, 2.186457e+03, 2.413972e+03, 2.649001e+03, 2.889385e+03, 3.133405e+03, 3.379793e+03, 3.627670e+03, 3.876452e+03, 4.125768e+03, 4.375392e+03, 4.625190e+03, 4.875083e+03, 5.125028e+03, 5.375000e+03])
- j(j)int321 2 3 4 5 6 ... 380 381 382 383 384
- units :
- 1
- long_name :
- cell index along second dimension
array([ 1, 2, 3, ..., 382, 383, 384], dtype=int32)
- i(i)int321 2 3 4 5 6 ... 316 317 318 319 320
- units :
- 1
- long_name :
- cell index along first dimension
array([ 1, 2, 3, ..., 318, 319, 320], dtype=int32)
- lat(j, i)float32dask.array<chunksize=(384, 320), meta=np.ndarray>
- standard_name :
- latitude
- long_name :
- latitude coordinate
- units :
- degrees_north
- bounds :
- lat_vertices
Array Chunk Bytes 491.52 kB 491.52 kB Shape (384, 320) (384, 320) Count 245 Tasks 1 Chunks Type float32 numpy.ndarray - lon(j, i)float32dask.array<chunksize=(384, 320), meta=np.ndarray>
- standard_name :
- longitude
- long_name :
- longitude coordinate
- units :
- degrees_east
- bounds :
- lon_vertices
Array Chunk Bytes 491.52 kB 491.52 kB Shape (384, 320) (384, 320) Count 245 Tasks 1 Chunks Type float32 numpy.ndarray
- time_bnds(time, bnds)float64dask.array<chunksize=(120, 2), meta=np.ndarray>
Array Chunk Bytes 96.19 kB 2.11 kB Shape (6012, 2) (132, 2) Count 150 Tasks 50 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(120, 60, 2), meta=np.ndarray>
Array Chunk Bytes 5.77 MB 126.72 kB Shape (6012, 60, 2) (132, 60, 2) Count 200 Tasks 50 Chunks Type float64 numpy.ndarray - lat_vertices(time, j, i, vertices)float32dask.array<chunksize=(120, 384, 320, 4), meta=np.ndarray>
- units :
- degrees_north
Array Chunk Bytes 11.82 GB 259.52 MB Shape (6012, 384, 320, 4) (132, 384, 320, 4) Count 200 Tasks 50 Chunks Type float32 numpy.ndarray - lon_vertices(time, j, i, vertices)float32dask.array<chunksize=(120, 384, 320, 4), meta=np.ndarray>
- units :
- degrees_east
Array Chunk Bytes 11.82 GB 259.52 MB Shape (6012, 384, 320, 4) (132, 384, 320, 4) Count 200 Tasks 50 Chunks Type float32 numpy.ndarray - thetao(time, lev, j, i)float32dask.array<chunksize=(120, 60, 384, 320), meta=np.ndarray>
- standard_name :
- sea_water_potential_temperature
- long_name :
- Sea Water Potential Temperature
- units :
- K
- original_name :
- TEMP
- comment :
- TEMP no change, units from C to K
- original_units :
- degC
- history :
- 2011-11-29T21:51:13Z altered by CMOR: Converted units from 'degC' to 'K'. 2011-11-29T21:51:13Z altered by CMOR: replaced missing value flag (9.96921e+36) with standard missing value (1e+20).
- cell_methods :
- time: mean (interval: 30 days)
- cell_measures :
- area: areacello volume: volcello
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_ocean_fx_CCSM4_piControl_r0i0p0.nc areacello: areacello_fx_CCSM4_piControl_r0i0p0.nc volcello: volcello_fx_CCSM4_piControl_r0i0p0.nc
Array Chunk Bytes 177.30 GB 3.89 GB Shape (6012, 60, 384, 320) (132, 60, 384, 320) Count 150 Tasks 50 Chunks Type float32 numpy.ndarray
- institution :
- NCAR (National Center for Atmospheric Research) Boulder, CO, USA
- institute_id :
- NCAR
- experiment_id :
- piControl
- source :
- CCSM4
- model_id :
- CCSM4
- forcing :
- Sl GHG Vl SS Ds SA BC MD OC Oz AA
- parent_experiment_id :
- N/A
- parent_experiment_rip :
- N/A
- branch_time :
- 0.0
- contact :
- cesm_data@ucar.edu
- references :
- Gent P. R., et.al. 2011: The Community Climate System Model version 4. J. Climate, doi: 10.1175/2011JCLI4083.1
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- 40090eca-a6c2-432c-94ee-e58bf72efe5a
- acknowledgements :
- The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. NCAR is sponsored by the National Science Foundation. Computing resources were provided by the Climate Simulation Laboratory at the NCAR Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies.
- cesm_casename :
- b40.1850.track1.1deg.006
- cesm_repotag :
- ccsm4_0_beta23
- cesm_compset :
- B1850TR1CN
- resolution :
- f09_g16 (0.9x1.25_gx1v6)
- forcing_note :
- Additional information on the external forcings used in this experiment can be found at http://www.cesm.ucar.edu/CMIP5/forcing_information
- processed_by :
- strandwg on copper.cgd.ucar.edu at 20111129 -145113.542
- processing_code_information :
- Last Changed Rev: 472 Last Changed Date: 2011-11-29 14:40:22 -0700 (Tue, 29 Nov 2011) Repository UUID: d2181dbe-5796-6825-dc7f-cbd98591f93d
- product :
- output
- experiment :
- pre-industrial control
- frequency :
- mon
- creation_date :
- 2011-11-29T21:51:13Z
- history :
- 2011-11-29T21:51:13Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table Omon (26 July 2011) 25bb94a0408beca44c0f5b601258a94e
- title :
- CCSM4 model output prepared for CMIP5 pre-industrial control
- parent_experiment :
- N/A
- modeling_realm :
- ocean
- realization :
- 1
- cmor_version :
- 2.7.1