thetao_Omon_CESM2-WACCM_piControl_r1i1p1f1_gn
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CESM2-WACCM_piControl_r1i1p1f1_gn.yaml")
ds=cat.netcdf.read()
        Metadata
| title | thetao_Omon_CESM2-WACCM_piControl_r1i1p1f1_gn | 
| location | /shared/cmip6/data/piControl/ocean/mon/Omon/thetao/NCAR.CESM2-WACCM/r1i1p1 | 
| tags | gridded,global,model,monthly | 
| catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CESM2-WACCM_piControl_r1i1p1f1_gn.yaml | 
| last updated | 2020-10-05 | 
Dataset Contents
<xarray.Dataset>
Dimensions:    (d2: 2, lev: 60, nlat: 384, nlon: 320, time: 5988, vertices: 4)
Coordinates:
    lat        (nlat, nlon) float64 dask.array<chunksize=(384, 320), meta=np.ndarray>
  * lev        (lev) float64 500.0 1.5e+03 2.5e+03 ... 5.125e+05 5.375e+05
    lon        (nlat, nlon) float64 dask.array<chunksize=(384, 320), meta=np.ndarray>
  * nlat       (nlat) int32 1 2 3 4 5 6 7 8 ... 377 378 379 380 381 382 383 384
  * nlon       (nlon) int32 1 2 3 4 5 6 7 8 ... 313 314 315 316 317 318 319 320
  * time       (time) float64 14.54 44.0 73.5 ... 1.821e+05 1.821e+05 1.821e+05
Dimensions without coordinates: d2, vertices
Data variables:
    thetao     (time, lev, nlat, nlon) float32 dask.array<chunksize=(1188, 60, 384, 320), meta=np.ndarray>
    time_bnds  (time, d2) float64 dask.array<chunksize=(1188, 2), meta=np.ndarray>
    lat_bnds   (time, nlat, nlon, vertices) float32 dask.array<chunksize=(1188, 384, 320, 4), meta=np.ndarray>
    lon_bnds   (time, nlat, nlon, vertices) float32 dask.array<chunksize=(1188, 384, 320, 4), meta=np.ndarray>
    lev_bnds   (time, lev, d2) float32 dask.array<chunksize=(1188, 60, 2), meta=np.ndarray>
Attributes:
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    case_id:                1
    cesm_casename:          b.e21.BW1850.f09_g17.CMIP6-piControl.001
    contact:                cesm_cmip6@ucar.edu
    creation_date:          2019-01-29T16:54:00Z
    data_specs_version:     01.00.29
    experiment:             pre-industrial control
    experiment_id:          piControl
    external_variables:     areacello volcello
    forcing_index:          1
    frequency:              mon
    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2-W...
    grid:                   native gx1v7 displaced pole grid (384x320 latxlon)
    grid_label:             gn
    initialization_index:   1
    institution:            National Center for Atmospheric Research, Climate...
    institution_id:         NCAR
    license:                CMIP6 model data produced by <The National Center...
    mip_era:                CMIP6
    model_doi_url:          https://doi.org/10.5065/D67H1H0V
    nominal_resolution:     100 km
    parent_mip_era:         CMIP6
    parent_source_id:       CESM2-WACCM
    parent_time_units:      days since 0001-01-01 00:00:00
    physics_index:          1
    product:                model-output
    realization_index:      1
    realm:                  ocean
    source:                 CESM2 (2017): atmosphere: CAM6 (0.9x1.25 finite v...
    source_id:              CESM2-WACCM
    source_type:            AOGCM BGC CHEM AER
    sub_experiment:         none
    sub_experiment_id:      none
    table_id:               Omon
    tracking_id:            hdl:21.14100/cf932d20-889b-4ac4-9c21-dbd62287cdf1
    variable_id:            thetao
    variant_info:           CMIP6 CESM2 piControl experiment with high-top at...
    variant_label:          r1i1p1f1
    parent_experiment_id:   piControl-spinup
    parent_activity_id:     CMIP
    parent_variant_label:   r1i1p1f1
    branch_time_in_parent:  48545.0
    branch_time_in_child:   0.0
    branch_method:          standardxarray.Dataset
- d2: 2
 - lev: 60
 - nlat: 384
 - nlon: 320
 - time: 5988
 - vertices: 4
 
- lat(nlat, nlon)float64dask.array<chunksize=(384, 320), meta=np.ndarray>
- axis :
 - Y
 - bounds :
 - lat_bnds
 - standard_name :
 - latitude
 - title :
 - Latitude
 - type :
 - double
 - units :
 - degrees_north
 - valid_max :
 - 90.0
 - valid_min :
 - -90.0
 
Array Chunk Bytes 983.04 kB 983.04 kB Shape (384, 320) (384, 320) Count 30 Tasks 1 Chunks Type float64 numpy.ndarray  - lev(lev)float64500.0 1.5e+03 ... 5.375e+05
- axis :
 - Z
 - bounds :
 - lev_bnds
 - positive :
 - down
 - standard_name :
 - olevel
 - title :
 - ocean model level
 - type :
 - double
 - units :
 - centimeters
 
array([5.000000e+02, 1.500000e+03, 2.500000e+03, 3.500000e+03, 4.500000e+03, 5.500000e+03, 6.500000e+03, 7.500000e+03, 8.500000e+03, 9.500000e+03, 1.050000e+04, 1.150000e+04, 1.250000e+04, 1.350000e+04, 1.450000e+04, 1.550000e+04, 1.650984e+04, 1.754790e+04, 1.862913e+04, 1.976603e+04, 2.097114e+04, 2.225783e+04, 2.364088e+04, 2.513702e+04, 2.676542e+04, 2.854837e+04, 3.051192e+04, 3.268680e+04, 3.510935e+04, 3.782276e+04, 4.087846e+04, 4.433777e+04, 4.827367e+04, 5.277280e+04, 5.793729e+04, 6.388626e+04, 7.075633e+04, 7.870025e+04, 8.788252e+04, 9.847059e+04, 1.106204e+05, 1.244567e+05, 1.400497e+05, 1.573946e+05, 1.764003e+05, 1.968944e+05, 2.186457e+05, 2.413972e+05, 2.649001e+05, 2.889385e+05, 3.133405e+05, 3.379793e+05, 3.627670e+05, 3.876452e+05, 4.125768e+05, 4.375392e+05, 4.625190e+05, 4.875083e+05, 5.125028e+05, 5.375000e+05]) - lon(nlat, nlon)float64dask.array<chunksize=(384, 320), meta=np.ndarray>
- axis :
 - X
 - bounds :
 - lon_bnds
 - standard_name :
 - longitude
 - title :
 - Longitude
 - type :
 - double
 - units :
 - degrees_east
 - valid_max :
 - 360.0
 - valid_min :
 - 0.0
 
Array Chunk Bytes 983.04 kB 983.04 kB Shape (384, 320) (384, 320) Count 30 Tasks 1 Chunks Type float64 numpy.ndarray  - nlat(nlat)int321 2 3 4 5 6 ... 380 381 382 383 384
- long_name :
 - cell index along second dimension
 - units :
 - 1
 
array([ 1, 2, 3, ..., 382, 383, 384], dtype=int32)
 - nlon(nlon)int321 2 3 4 5 6 ... 316 317 318 319 320
- long_name :
 - cell index along first dimension
 - units :
 - 1
 
array([ 1, 2, 3, ..., 318, 319, 320], dtype=int32)
 - time(time)float6414.54 44.0 ... 1.821e+05 1.821e+05
- axis :
 - T
 - bounds :
 - time_bnds
 - standard_name :
 - time
 - title :
 - time
 - type :
 - double
 - units :
 - days since 0001-01-01 00:00:00
 - calendar :
 - noleap
 
array([1.454167e+01, 4.400000e+01, 7.350000e+01, ..., 1.820575e+05, 1.820880e+05, 1.821185e+05]) 
- thetao(time, lev, nlat, nlon)float32dask.array<chunksize=(1188, 60, 384, 320), meta=np.ndarray>
- cell_measures :
 - area: areacello volume: volcello
 - cell_methods :
 - area: mean where sea time: mean
 - comment :
 - Diagnostic should be contributed even for models using conservative temperature as prognostic field.
 - description :
 - Diagnostic should be contributed even for models using conservative temperature as prognostic field.
 - frequency :
 - mon
 - id :
 - thetao
 - long_name :
 - Sea Water Potential Temperature
 - mipTable :
 - Omon
 - out_name :
 - thetao
 - prov :
 - Omon ((isd.003))
 - realm :
 - ocean
 - standard_name :
 - sea_water_potential_temperature
 - time :
 - time
 - time_label :
 - time-mean
 - time_title :
 - Temporal mean
 - title :
 - Sea Water Potential Temperature
 - type :
 - real
 - units :
 - degC
 - variable_id :
 - thetao
 
Array Chunk Bytes 176.59 GB 35.39 GB Shape (5988, 60, 384, 320) (1200, 60, 384, 320) Count 21 Tasks 7 Chunks Type float32 numpy.ndarray  - time_bnds(time, d2)float64dask.array<chunksize=(1188, 2), meta=np.ndarray>
- calendar :
 - noleap
 - units :
 - days since 0001-01-01 00:00:00
 
Array Chunk Bytes 95.81 kB 19.20 kB Shape (5988, 2) (1200, 2) Count 21 Tasks 7 Chunks Type float64 numpy.ndarray  - lat_bnds(time, nlat, nlon, vertices)float32dask.array<chunksize=(1188, 384, 320, 4), meta=np.ndarray>
- units :
 - degrees_north
 
Array Chunk Bytes 11.77 GB 2.36 GB Shape (5988, 384, 320, 4) (1200, 384, 320, 4) Count 28 Tasks 7 Chunks Type float32 numpy.ndarray  - lon_bnds(time, nlat, nlon, vertices)float32dask.array<chunksize=(1188, 384, 320, 4), meta=np.ndarray>
- units :
 - degrees_east
 
Array Chunk Bytes 11.77 GB 2.36 GB Shape (5988, 384, 320, 4) (1200, 384, 320, 4) Count 28 Tasks 7 Chunks Type float32 numpy.ndarray  - lev_bnds(time, lev, d2)float32dask.array<chunksize=(1188, 60, 2), meta=np.ndarray>
- units :
 - m
 
Array Chunk Bytes 2.87 MB 576.00 kB Shape (5988, 60, 2) (1200, 60, 2) Count 28 Tasks 7 Chunks Type float32 numpy.ndarray  
- Conventions :
 - CF-1.7 CMIP-6.2
 - activity_id :
 - CMIP
 - case_id :
 - 1
 - cesm_casename :
 - b.e21.BW1850.f09_g17.CMIP6-piControl.001
 - contact :
 - cesm_cmip6@ucar.edu
 - creation_date :
 - 2019-01-29T16:54:00Z
 - data_specs_version :
 - 01.00.29
 - experiment :
 - pre-industrial control
 - experiment_id :
 - piControl
 - external_variables :
 - areacello volcello
 - forcing_index :
 - 1
 - frequency :
 - mon
 - further_info_url :
 - https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2-WACCM.piControl.none.r1i1p1f1
 - grid :
 - native gx1v7 displaced pole grid (384x320 latxlon)
 - grid_label :
 - gn
 - initialization_index :
 - 1
 - institution :
 - National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA
 - institution_id :
 - NCAR
 - license :
 - CMIP6 model data produced by <The National Center for Atmospheric Research> is licensed under a Creative Commons Attribution-[]ShareAlike 4.0 International License (https://creativecommons.org/licenses/). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file)[]. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
 - mip_era :
 - CMIP6
 - model_doi_url :
 - https://doi.org/10.5065/D67H1H0V
 - nominal_resolution :
 - 100 km
 - parent_mip_era :
 - CMIP6
 - parent_source_id :
 - CESM2-WACCM
 - parent_time_units :
 - days since 0001-01-01 00:00:00
 - physics_index :
 - 1
 - product :
 - model-output
 - realization_index :
 - 1
 - realm :
 - ocean
 - source :
 - CESM2 (2017): atmosphere: CAM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-6 mb); ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m); sea_ice: CICE5.1 (same grid as ocean); land: CLM5 0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-6 mb); aerosol: MAM4 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-6 mb); atmosChem: WACCM (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-6 mb; landIce: CISM2.1; ocnBgchem: MARBL (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m)
 - source_id :
 - CESM2-WACCM
 - source_type :
 - AOGCM BGC CHEM AER
 - sub_experiment :
 - none
 - sub_experiment_id :
 - none
 - table_id :
 - Omon
 - tracking_id :
 - hdl:21.14100/cf932d20-889b-4ac4-9c21-dbd62287cdf1
 - variable_id :
 - thetao
 - variant_info :
 - CMIP6 CESM2 piControl experiment with high-top atmosphere (WACCM6) with interactive chemistry (TSMLT1), interactive land (CLM5), coupled ocean (POP2) with biogeochemistry (MARBL), interactive sea ice (CICE5.1), and non-evolving land ice (CISM2.1)
 - variant_label :
 - r1i1p1f1
 - parent_experiment_id :
 - piControl-spinup
 - parent_activity_id :
 - CMIP
 - parent_variant_label :
 - r1i1p1f1
 - branch_time_in_parent :
 - 48545.0
 - branch_time_in_child :
 - 0.0
 - branch_method :
 - standard
 
