CMCC-CM2-SR5 output prepared for CMIP6
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CMCC-CM2-SR5_piControl_r1i1p1f1_gn.yaml")
ds=cat.netcdf.read()
        Metadata
| title | CMCC-CM2-SR5 output prepared for CMIP6 | 
| location | /shared/cmip6/data/piControl/ocean/mon/Omon/thetao/CMCC-CM2-SR5/r1i1p1 | 
| tags | gridded,global,model,monthly | 
| catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_CMCC-CM2-SR5_piControl_r1i1p1f1_gn.yaml | 
| last updated | 2020-09-29 | 
Dataset Contents
<xarray.Dataset>
Dimensions:             (bnds: 2, i: 292, j: 362, lev: 50, time: 6000, vertices: 4)
Coordinates:
  * time                (time) float64 15.5 45.0 74.5 ... 1.825e+05 1.825e+05
  * lev                 (lev) float64 0.5126 1.621 2.858 ... 5.498e+03 5.904e+03
  * i                   (i) int32 0 1 2 3 4 5 6 ... 285 286 287 288 289 290 291
  * j                   (j) int32 0 1 2 3 4 5 6 ... 355 356 357 358 359 360 361
    latitude            (i, j) float64 dask.array<chunksize=(292, 362), meta=np.ndarray>
    longitude           (i, j) float64 dask.array<chunksize=(292, 362), meta=np.ndarray>
Dimensions without coordinates: bnds, vertices
Data variables:
    time_bnds           (time, bnds) float64 dask.array<chunksize=(240, 2), meta=np.ndarray>
    lev_bnds            (time, lev, bnds) float64 dask.array<chunksize=(240, 50, 2), meta=np.ndarray>
    vertices_latitude   (time, i, j, vertices) float64 dask.array<chunksize=(240, 292, 362, 4), meta=np.ndarray>
    vertices_longitude  (time, i, j, vertices) float64 dask.array<chunksize=(240, 292, 362, 4), meta=np.ndarray>
    thetao              (time, lev, i, j) float32 dask.array<chunksize=(240, 50, 292, 362), meta=np.ndarray>
Attributes:
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    branch_method:          standard
    branch_time_in_child:   0.0
    branch_time_in_parent:  0.0
    comment:                none
    contact:                T. Lovato
    creation_date:          2020-06-09T20:54:57Z
    data_specs_version:     01.00.31
    experiment:             pre-industrial control
    experiment_id:          piControl
    external_variables:     areacello volcello
    forcing_index:          1
    frequency:              mon
    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.CMCC.CMCC-CM...
    grid:                   native ocean curvilinear grid
    grid_label:             gn
    history:                2020-06-09T20:54:57Z ;rewrote data to be consiste...
    initialization_index:   1
    institution:            Fondazione Centro Euro-Mediterraneo sui Cambiamen...
    institution_id:         CMCC
    mip_era:                CMIP6
    nominal_resolution:     100 km
    parent_activity_id:     CMIP
    parent_experiment_id:   piControl-spinup
    parent_mip_era:         CMIP6
    parent_source_id:       CMCC-CM2-SR5
    parent_time_units:      days since 1850-01-01
    parent_variant_label:   r1i1p1f1
    physics_index:          1
    product:                model-output
    realization_index:      1
    realm:                  ocean
    references:             none
    run_variant:            1st realization
    source:                 CMCC-CM2-SR5 (2016): 
aerosol: MAM3
atmos: CAM5...
    source_id:              CMCC-CM2-SR5
    source_type:            AOGCM
    sub_experiment:         none
    sub_experiment_id:      none
    table_id:               Omon
    table_info:             Creation Date:(05 February 2020) MD5:6a248fd76c55...
    title:                  CMCC-CM2-SR5 output prepared for CMIP6
    variable_id:            thetao
    variant_label:          r1i1p1f1
    license:                CMIP6 model data produced by CMCC is licensed und...
    cmor_version:           3.5.0
    tracking_id:            hdl:21.14100/f0047f18-2591-46b3-802a-a69ab3639558xarray.Dataset
- bnds: 2
 - i: 292
 - j: 362
 - lev: 50
 - time: 6000
 - vertices: 4
 
- time(time)float6415.5 45.0 ... 1.825e+05 1.825e+05
- bounds :
 - time_bnds
 - units :
 - days since 1850-01-01
 - calendar :
 - 365_day
 - axis :
 - T
 - long_name :
 - time
 - standard_name :
 - time
 
array([1.550000e+01, 4.500000e+01, 7.450000e+01, ..., 1.824235e+05, 1.824540e+05, 1.824845e+05]) - lev(lev)float640.5126 1.621 ... 5.904e+03
- bounds :
 - lev_bnds
 - units :
 - m
 - axis :
 - Z
 - positive :
 - down
 - long_name :
 - ocean depth coordinate
 - standard_name :
 - depth
 
array([5.126340e-01, 1.621015e+00, 2.858431e+00, 4.250513e+00, 5.827960e+00, 7.627532e+00, 9.693230e+00, 1.207770e+01, 1.484391e+01, 1.806713e+01, 2.183723e+01, 2.626152e+01, 3.146791e+01, 3.760874e+01, 4.486517e+01, 5.345229e+01, 6.362492e+01, 7.568428e+01, 8.998535e+01, 1.069451e+02, 1.270512e+02, 1.508713e+02, 1.790624e+02, 2.123794e+02, 2.516826e+02, 2.979431e+02, 3.522440e+02, 4.157769e+02, 4.898312e+02, 5.757748e+02, 6.750254e+02, 7.890108e+02, 9.191196e+02, 1.066644e+03, 1.232717e+03, 1.418255e+03, 1.623902e+03, 1.849991e+03, 2.096521e+03, 2.363159e+03, 2.649263e+03, 2.953915e+03, 3.275983e+03, 3.614175e+03, 3.967101e+03, 4.333334e+03, 4.711457e+03, 5.100101e+03, 5.497977e+03, 5.903893e+03]) - i(i)int320 1 2 3 4 5 ... 287 288 289 290 291
- units :
 - 1
 - long_name :
 - first spatial index for variables stored on an unstructured grid
 
array([ 0, 1, 2, ..., 289, 290, 291], dtype=int32)
 - j(j)int320 1 2 3 4 5 ... 357 358 359 360 361
- units :
 - 1
 - long_name :
 - second spatial index for variables stored on an unstructured grid
 
array([ 0, 1, 2, ..., 359, 360, 361], dtype=int32)
 - latitude(i, j)float64dask.array<chunksize=(292, 362), meta=np.ndarray>
- standard_name :
 - latitude
 - long_name :
 - latitude
 - units :
 - degrees_north
 - bounds :
 - vertices_latitude
 
Array Chunk Bytes 845.63 kB 845.63 kB Shape (292, 362) (292, 362) Count 120 Tasks 1 Chunks Type float64 numpy.ndarray  - longitude(i, j)float64dask.array<chunksize=(292, 362), meta=np.ndarray>
- standard_name :
 - longitude
 - long_name :
 - longitude
 - units :
 - degrees_east
 - bounds :
 - vertices_longitude
 
Array Chunk Bytes 845.63 kB 845.63 kB Shape (292, 362) (292, 362) Count 120 Tasks 1 Chunks Type float64 numpy.ndarray  
- time_bnds(time, bnds)float64dask.array<chunksize=(240, 2), meta=np.ndarray>
Array Chunk Bytes 96.00 kB 3.84 kB Shape (6000, 2) (240, 2) Count 75 Tasks 25 Chunks Type float64 numpy.ndarray  - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(240, 50, 2), meta=np.ndarray>
Array Chunk Bytes 4.80 MB 192.00 kB Shape (6000, 50, 2) (240, 50, 2) Count 100 Tasks 25 Chunks Type float64 numpy.ndarray  - vertices_latitude(time, i, j, vertices)float64dask.array<chunksize=(240, 292, 362, 4), meta=np.ndarray>
- units :
 - degrees_north
 
Array Chunk Bytes 20.30 GB 811.81 MB Shape (6000, 292, 362, 4) (240, 292, 362, 4) Count 100 Tasks 25 Chunks Type float64 numpy.ndarray  - vertices_longitude(time, i, j, vertices)float64dask.array<chunksize=(240, 292, 362, 4), meta=np.ndarray>
- units :
 - degrees_east
 
Array Chunk Bytes 20.30 GB 811.81 MB Shape (6000, 292, 362, 4) (240, 292, 362, 4) Count 100 Tasks 25 Chunks Type float64 numpy.ndarray  - thetao(time, lev, i, j)float32dask.array<chunksize=(240, 50, 292, 362), meta=np.ndarray>
- standard_name :
 - sea_water_potential_temperature
 - long_name :
 - Sea Water Potential Temperature
 - comment :
 - Diagnostic should be contributed even for models using conservative temperature as prognostic field.
 - units :
 - degC
 - cell_methods :
 - area: mean where sea time: mean
 - cell_measures :
 - area: areacello volume: volcello
 
Array Chunk Bytes 126.84 GB 5.07 GB Shape (6000, 50, 292, 362) (240, 50, 292, 362) Count 75 Tasks 25 Chunks Type float32 numpy.ndarray  
- Conventions :
 - CF-1.7 CMIP-6.2
 - activity_id :
 - CMIP
 - branch_method :
 - standard
 - branch_time_in_child :
 - 0.0
 - branch_time_in_parent :
 - 0.0
 - comment :
 - none
 - contact :
 - T. Lovato
 - creation_date :
 - 2020-06-09T20:54:57Z
 - data_specs_version :
 - 01.00.31
 - experiment :
 - pre-industrial control
 - experiment_id :
 - piControl
 - external_variables :
 - areacello volcello
 - forcing_index :
 - 1
 - frequency :
 - mon
 - further_info_url :
 - https://furtherinfo.es-doc.org/CMIP6.CMCC.CMCC-CM2-SR5.piControl.none.r1i1p1f1
 - grid :
 - native ocean curvilinear grid
 - grid_label :
 - gn
 - history :
 - 2020-06-09T20:54:57Z ;rewrote data to be consistent with CMIP for variable thetao found in table Omon.; none
 - initialization_index :
 - 1
 - institution :
 - Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy
 - institution_id :
 - CMCC
 - mip_era :
 - CMIP6
 - nominal_resolution :
 - 100 km
 - parent_activity_id :
 - CMIP
 - parent_experiment_id :
 - piControl-spinup
 - parent_mip_era :
 - CMIP6
 - parent_source_id :
 - CMCC-CM2-SR5
 - parent_time_units :
 - days since 1850-01-01
 - parent_variant_label :
 - r1i1p1f1
 - physics_index :
 - 1
 - product :
 - model-output
 - realization_index :
 - 1
 - realm :
 - ocean
 - references :
 - none
 - run_variant :
 - 1st realization
 - source :
 - CMCC-CM2-SR5 (2016): aerosol: MAM3 atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa) atmosChem: none land: CLM4.5 (BGC mode) landIce: none ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m) ocnBgchem: none seaIce: CICE4.0
 - source_id :
 - CMCC-CM2-SR5
 - source_type :
 - AOGCM
 - sub_experiment :
 - none
 - sub_experiment_id :
 - none
 - table_id :
 - Omon
 - table_info :
 - Creation Date:(05 February 2020) MD5:6a248fd76c55aa6d6f7b3cc6866b5faf
 - title :
 - CMCC-CM2-SR5 output prepared for CMIP6
 - variable_id :
 - thetao
 - variant_label :
 - r1i1p1f1
 - license :
 - CMIP6 model data produced by CMCC is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
 - cmor_version :
 - 3.5.0
 - tracking_id :
 - hdl:21.14100/f0047f18-2591-46b3-802a-a69ab3639558
 
