FGOALS-g3 output prepared for CMIP6
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_FGOALS-g3_piControl_r1i1p1f1_gn.yaml")
ds=cat.netcdf.read()
        Metadata
| title | FGOALS-g3 output prepared for CMIP6 | 
| location | /shared/cmip6/data/piControl/ocean/mon/Omon/thetao/CAS.FGOALS-g3/r1i1p1 | 
| tags | gridded,global,model,monthly | 
| catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_FGOALS-g3_piControl_r1i1p1f1_gn.yaml | 
| last updated | 2020-10-21 | 
Dataset Contents
<xarray.Dataset>
Dimensions:    (bnds: 2, i: 360, j: 218, lev: 30, time: 8400)
Coordinates:
  * time       (time) float64 7.265e+04 7.268e+04 ... 3.281e+05 3.281e+05
  * lev        (lev) float64 5.0 15.0 25.0 ... 3.856e+03 4.538e+03 5.244e+03
  * j          (j) int32 0 1 2 3 4 5 6 7 8 ... 210 211 212 213 214 215 216 217
  * i          (i) int32 0 1 2 3 4 5 6 7 8 ... 352 353 354 355 356 357 358 359
    latitude   (j, i) float64 dask.array<chunksize=(218, 360), meta=np.ndarray>
    longitude  (j, i) float64 dask.array<chunksize=(218, 360), meta=np.ndarray>
Dimensions without coordinates: bnds
Data variables:
    time_bnds  (time, bnds) float64 dask.array<chunksize=(600, 2), meta=np.ndarray>
    lev_bnds   (time, lev, bnds) float64 dask.array<chunksize=(600, 30, 2), meta=np.ndarray>
    thetao     (time, lev, j, i) float32 dask.array<chunksize=(600, 30, 218, 360), meta=np.ndarray>
Attributes:
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    branch_method:          Spin-up documentation
    branch_time_in_child:   0.0
    branch_time_in_parent:  73000.0
    contact:                Lijuan Li(ljli@mail.iap.ac.cn)
    creation_date:          2019-11-26T01:41:15Z
    data_specs_version:     01.00.30
    experiment:             pre-industrial control
    experiment_id:          piControl
    external_variables:     areacello volcello
    forcing_index:          1
    frequency:              mon
    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.CAS.FGOALS-g...
    grid:                   gs1x1
    grid_label:             gn
    history:                2019-11-25T15:23:33Z ;rewrote data to be consiste...
    initialization_index:   1
    institution:            Chinese Academy of Sciences, Beijing 100029, China
    institution_id:         CAS
    mip_era:                CMIP6
    nominal_resolution:     100 km
    parent_activity_id:     CMIP
    parent_experiment_id:   piControl-spinup
    parent_mip_era:         CMIP6
    parent_source_id:       FGOALS-g3
    parent_time_units:      days since 0001-01-01
    parent_variant_label:   r1i1p1f1
    physics_index:          1
    product:                model-output
    realization_index:      1
    realm:                  ocean
    run_variant:            forcing: black carbon aerosol only
    source:                 FGOALS-g3 (2017): 
aerosol: none
atmos: GAMIL2 ...
    source_id:              FGOALS-g3
    source_type:            AOGCM
    sub_experiment:         none
    sub_experiment_id:      none
    table_id:               Omon
    table_info:             Creation Date:(09 May 2019) MD5:cde930676e68ac678...
    title:                  FGOALS-g3 output prepared for CMIP6
    tracking_id:            hdl:21.14100/ea8b0ec1-af01-4d7f-ba66-a816fc8a5a02
    variable_id:            thetao
    variant_label:          r1i1p1f1
    license:                CMIP6 model data produced by LASG, Institute of A...
    cmor_version:           3.4.0xarray.Dataset
- bnds: 2
 - i: 360
 - j: 218
 - lev: 30
 - time: 8400
 
- time(time)float647.265e+04 7.268e+04 ... 3.281e+05
- bounds :
 - time_bnds
 - units :
 - days since 0001-01-01 00:00:00
 - calendar :
 - 365_day
 - axis :
 - T
 - long_name :
 - time
 - standard_name :
 - time
 
array([ 72650.5, 72680. , 72709.5, ..., 328058.5, 328089. , 328119.5])
 - lev(lev)float645.0 15.0 ... 4.538e+03 5.244e+03
- bounds :
 - lev_bnds
 - units :
 - m
 - axis :
 - Z
 - positive :
 - down
 - long_name :
 - ocean depth coordinate
 - standard_name :
 - depth
 
array([5.000000e+00, 1.500000e+01, 2.500000e+01, 3.500000e+01, 4.500000e+01, 5.500000e+01, 6.500000e+01, 7.500000e+01, 8.500000e+01, 9.500000e+01, 1.050000e+02, 1.150000e+02, 1.250000e+02, 1.350000e+02, 1.450000e+02, 1.569303e+02, 1.784277e+02, 2.225018e+02, 3.031057e+02, 4.325961e+02, 6.211931e+02, 8.765334e+02, 1.203337e+03, 1.603200e+03, 2.074526e+03, 2.612596e+03, 3.209772e+03, 3.855835e+03, 4.538428e+03, 5.243597e+03]) - j(j)int320 1 2 3 4 5 ... 213 214 215 216 217
- units :
 - 1
 - long_name :
 - cell index along second dimension
 
array([ 0, 1, 2, ..., 215, 216, 217], dtype=int32)
 - i(i)int320 1 2 3 4 5 ... 355 356 357 358 359
- units :
 - 1
 - long_name :
 - cell index along first dimension
 
array([ 0, 1, 2, ..., 357, 358, 359], dtype=int32)
 - latitude(j, i)float64dask.array<chunksize=(218, 360), meta=np.ndarray>
- standard_name :
 - latitude
 - long_name :
 - latitude
 - units :
 - degrees_north
 
Array Chunk Bytes 627.84 kB 627.84 kB Shape (218, 360) (218, 360) Count 65 Tasks 1 Chunks Type float64 numpy.ndarray  - longitude(j, i)float64dask.array<chunksize=(218, 360), meta=np.ndarray>
- standard_name :
 - longitude
 - long_name :
 - longitude
 - units :
 - degrees_east
 
Array Chunk Bytes 627.84 kB 627.84 kB Shape (218, 360) (218, 360) Count 65 Tasks 1 Chunks Type float64 numpy.ndarray  
- time_bnds(time, bnds)float64dask.array<chunksize=(600, 2), meta=np.ndarray>
Array Chunk Bytes 134.40 kB 9.60 kB Shape (8400, 2) (600, 2) Count 42 Tasks 14 Chunks Type float64 numpy.ndarray  - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(600, 30, 2), meta=np.ndarray>
Array Chunk Bytes 4.03 MB 288.00 kB Shape (8400, 30, 2) (600, 30, 2) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray  - thetao(time, lev, j, i)float32dask.array<chunksize=(600, 30, 218, 360), meta=np.ndarray>
- standard_name :
 - sea_water_potential_temperature
 - long_name :
 - Sea Water Potential Temperature
 - comment :
 - Diagnostic should be contributed even for models using conservative temperature as prognostic field.
 - units :
 - degC
 - cell_methods :
 - area: mean where sea time: mean
 - cell_measures :
 - area: areacello volume: volcello
 - history :
 - 2019-11-26T01:38:58Z altered by CMOR: replaced missing value flag (1e+35) with standard missing value (1e+20).
 
Array Chunk Bytes 79.11 GB 5.65 GB Shape (8400, 30, 218, 360) (600, 30, 218, 360) Count 42 Tasks 14 Chunks Type float32 numpy.ndarray  
- Conventions :
 - CF-1.7 CMIP-6.2
 - activity_id :
 - CMIP
 - branch_method :
 - Spin-up documentation
 - branch_time_in_child :
 - 0.0
 - branch_time_in_parent :
 - 73000.0
 - contact :
 - Lijuan Li(ljli@mail.iap.ac.cn)
 - creation_date :
 - 2019-11-26T01:41:15Z
 - data_specs_version :
 - 01.00.30
 - experiment :
 - pre-industrial control
 - experiment_id :
 - piControl
 - external_variables :
 - areacello volcello
 - forcing_index :
 - 1
 - frequency :
 - mon
 - further_info_url :
 - https://furtherinfo.es-doc.org/CMIP6.CAS.FGOALS-g3.piControl.none.r1i1p1f1
 - grid :
 - gs1x1
 - grid_label :
 - gn
 - history :
 - 2019-11-25T15:23:33Z ;rewrote data to be consistent with CMIP for variable uo found in table Omon.
 - initialization_index :
 - 1
 - institution :
 - Chinese Academy of Sciences, Beijing 100029, China
 - institution_id :
 - CAS
 - mip_era :
 - CMIP6
 - nominal_resolution :
 - 100 km
 - parent_activity_id :
 - CMIP
 - parent_experiment_id :
 - piControl-spinup
 - parent_mip_era :
 - CMIP6
 - parent_source_id :
 - FGOALS-g3
 - parent_time_units :
 - days since 0001-01-01
 - parent_variant_label :
 - r1i1p1f1
 - physics_index :
 - 1
 - product :
 - model-output
 - realization_index :
 - 1
 - realm :
 - ocean
 - run_variant :
 - forcing: black carbon aerosol only
 - source :
 - FGOALS-g3 (2017): aerosol: none atmos: GAMIL2 (180 x 90 longitude/latitude; 26 levels; top level 2.19hPa) atmosChem: none land: CLM4.0 landIce: none ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m) ocnBgchem: none seaIce: CICE4.0
 - source_id :
 - FGOALS-g3
 - source_type :
 - AOGCM
 - sub_experiment :
 - none
 - sub_experiment_id :
 - none
 - table_id :
 - Omon
 - table_info :
 - Creation Date:(09 May 2019) MD5:cde930676e68ac6780d5e4c62d3898f6
 - title :
 - FGOALS-g3 output prepared for CMIP6
 - tracking_id :
 - hdl:21.14100/ea8b0ec1-af01-4d7f-ba66-a816fc8a5a02
 - variable_id :
 - thetao
 - variant_label :
 - r1i1p1f1
 - license :
 - CMIP6 model data produced by LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses/). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) http://model.lasg.ac.cn. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
 - cmor_version :
 - 3.4.0
 
