MRI-ESM2-0 output prepared for CMIP6
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_MRI-ESM2-0_piControl_r1i1p1f1_gn.yaml")
ds=cat.netcdf.read()
Metadata
title | MRI-ESM2-0 output prepared for CMIP6 |
location | /shared/cmip6/data/piControl/ocean/mon/Omon/thetao/MRI-ESM2-0/r1i1p1 |
tags | gridded,global,model,monthly |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/thetao_Omon_MRI-ESM2-0_piControl_r1i1p1f1_gn.yaml |
last updated | 2020-10-22 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, lev: 61, time: 8412, vertices: 4, x: 360, y: 363) Coordinates: * time (time) float64 15.5 45.0 74.5 ... 2.56e+05 2.56e+05 * lev (lev) float64 1.0 3.5 6.5 ... 5.5e+03 6.15e+03 6.525e+03 * y (y) float64 -78.0 -77.5 -77.0 ... 149.7 151.8 154.0 * x (x) float64 0.0 1.0 2.0 3.0 ... 356.0 357.0 358.0 359.0 latitude (y, x) float64 dask.array<chunksize=(363, 360), meta=np.ndarray> longitude (y, x) float64 dask.array<chunksize=(363, 360), meta=np.ndarray> Dimensions without coordinates: bnds, vertices Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(600, 2), meta=np.ndarray> lev_bnds (time, lev, bnds) float64 dask.array<chunksize=(600, 61, 2), meta=np.ndarray> y_bnds (time, y, bnds) float64 dask.array<chunksize=(600, 363, 2), meta=np.ndarray> x_bnds (time, x, bnds) float64 dask.array<chunksize=(600, 360, 2), meta=np.ndarray> vertices_latitude (time, y, x, vertices) float64 dask.array<chunksize=(600, 363, 360, 4), meta=np.ndarray> vertices_longitude (time, y, x, vertices) float64 dask.array<chunksize=(600, 363, 360, 4), meta=np.ndarray> thetao (time, lev, y, x) float32 dask.array<chunksize=(600, 61, 363, 360), meta=np.ndarray> Attributes: Conventions: CF-1.7 CMIP-6.2 activity_id: CMIP branch_method: standard branch_time_in_child: 0.0 branch_time_in_parent: 365243.0 creation_date: 2019-12-09T11:15:43Z data_specs_version: 01.00.31 experiment: pre-industrial control experiment_id: piControl external_variables: areacello volcello forcing_index: 1 frequency: mon further_info_url: https://furtherinfo.es-doc.org/CMIP6.MRI.MRI-ESM2... grid: native ocean tri-polar grid with 360x363 ocean cells grid_label: gn history: 2019-12-09T11:15:43Z ; CMOR rewrote data to be co... initialization_index: 1 institution: Meteorological Research Institute, Tsukuba, Ibara... institution_id: MRI mip_era: CMIP6 nominal_resolution: 100 km parent_activity_id: CMIP parent_experiment_id: piControl-spinup parent_mip_era: CMIP6 parent_source_id: MRI-ESM2-0 parent_time_units: days since 1850-01-01 parent_variant_label: r1i1p1f1 physics_index: 1 product: model-output realization_index: 1 realm: ocean source: MRI-ESM2.0 (2017): aerosol: MASINGAR mk2r4 (TL9... source_id: MRI-ESM2-0 source_type: AOGCM AER CHEM sub_experiment: none sub_experiment_id: none table_id: Omon table_info: Creation Date:(24 July 2019) MD5:c93735846d664589... title: MRI-ESM2-0 output prepared for CMIP6 variable_id: thetao variant_label: r1i1p1f1 license: CMIP6 model data produced by MRI is licensed unde... cmor_version: 3.5.0 tracking_id: hdl:21.14100/9efbe1ca-8284-4062-a82e-12ed7d9e1181
xarray.Dataset
- bnds: 2
- lev: 61
- time: 8412
- vertices: 4
- x: 360
- y: 363
- time(time)float6415.5 45.0 ... 2.56e+05 2.56e+05
- bounds :
- time_bnds
- units :
- days since 1850-01-01
- calendar :
- proleptic_gregorian
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([1.550000e+01, 4.500000e+01, 7.450000e+01, ..., 2.559585e+05, 2.559890e+05, 2.560195e+05])
- lev(lev)float641.0 3.5 6.5 ... 6.15e+03 6.525e+03
- bounds :
- lev_bnds
- units :
- m
- axis :
- Z
- positive :
- down
- long_name :
- ocean depth coordinate
- standard_name :
- depth
array([1.0000e+00, 3.5000e+00, 6.5000e+00, 1.0000e+01, 1.5000e+01, 2.2000e+01, 3.0500e+01, 4.0000e+01, 5.0000e+01, 6.0000e+01, 7.0000e+01, 8.0000e+01, 9.0000e+01, 1.0000e+02, 1.1000e+02, 1.2000e+02, 1.3000e+02, 1.4000e+02, 1.5000e+02, 1.6000e+02, 1.7000e+02, 1.8000e+02, 1.9000e+02, 2.0000e+02, 2.1250e+02, 2.3000e+02, 2.5000e+02, 2.7250e+02, 3.0000e+02, 3.3000e+02, 3.6250e+02, 4.0000e+02, 4.4000e+02, 4.8500e+02, 5.4000e+02, 6.0000e+02, 6.6500e+02, 7.4000e+02, 8.2000e+02, 9.0500e+02, 1.0000e+03, 1.1000e+03, 1.2125e+03, 1.3500e+03, 1.5000e+03, 1.6500e+03, 1.8125e+03, 2.0000e+03, 2.2250e+03, 2.4750e+03, 2.7250e+03, 3.0000e+03, 3.3000e+03, 3.6000e+03, 3.9000e+03, 4.2000e+03, 4.5500e+03, 4.9750e+03, 5.5000e+03, 6.1500e+03, 6.5250e+03])
- y(y)float64-78.0 -77.5 -77.0 ... 151.8 154.0
- bounds :
- y_bnds
- units :
- degrees
- axis :
- Y
- long_name :
- y coordinate of projection
- standard_name :
- projection_y_coordinate
array([-78. , -77.5 , -77. , ..., 149.670841, 151.834689, 154. ])
- x(x)float640.0 1.0 2.0 ... 357.0 358.0 359.0
- bounds :
- x_bnds
- units :
- degrees
- axis :
- X
- long_name :
- x coordinate of projection
- standard_name :
- projection_x_coordinate
array([ 0., 1., 2., ..., 357., 358., 359.])
- latitude(y, x)float64dask.array<chunksize=(363, 360), meta=np.ndarray>
- standard_name :
- latitude
- long_name :
- latitude
- units :
- degrees_north
- bounds :
- vertices_latitude
Array Chunk Bytes 1.05 MB 1.05 MB Shape (363, 360) (363, 360) Count 65 Tasks 1 Chunks Type float64 numpy.ndarray - longitude(y, x)float64dask.array<chunksize=(363, 360), meta=np.ndarray>
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
- bounds :
- vertices_longitude
Array Chunk Bytes 1.05 MB 1.05 MB Shape (363, 360) (363, 360) Count 65 Tasks 1 Chunks Type float64 numpy.ndarray
- time_bnds(time, bnds)float64dask.array<chunksize=(600, 2), meta=np.ndarray>
Array Chunk Bytes 134.59 kB 9.79 kB Shape (8412, 2) (612, 2) Count 42 Tasks 14 Chunks Type float64 numpy.ndarray - lev_bnds(time, lev, bnds)float64dask.array<chunksize=(600, 61, 2), meta=np.ndarray>
Array Chunk Bytes 8.21 MB 597.31 kB Shape (8412, 61, 2) (612, 61, 2) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray - y_bnds(time, y, bnds)float64dask.array<chunksize=(600, 363, 2), meta=np.ndarray>
Array Chunk Bytes 48.86 MB 3.55 MB Shape (8412, 363, 2) (612, 363, 2) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray - x_bnds(time, x, bnds)float64dask.array<chunksize=(600, 360, 2), meta=np.ndarray>
Array Chunk Bytes 48.45 MB 3.53 MB Shape (8412, 360, 2) (612, 360, 2) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray - vertices_latitude(time, y, x, vertices)float64dask.array<chunksize=(600, 363, 360, 4), meta=np.ndarray>
- units :
- degrees_north
Array Chunk Bytes 35.18 GB 2.56 GB Shape (8412, 363, 360, 4) (612, 363, 360, 4) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray - vertices_longitude(time, y, x, vertices)float64dask.array<chunksize=(600, 363, 360, 4), meta=np.ndarray>
- units :
- degrees_east
Array Chunk Bytes 35.18 GB 2.56 GB Shape (8412, 363, 360, 4) (612, 363, 360, 4) Count 56 Tasks 14 Chunks Type float64 numpy.ndarray - thetao(time, lev, y, x)float32dask.array<chunksize=(600, 61, 363, 360), meta=np.ndarray>
- standard_name :
- sea_water_potential_temperature
- long_name :
- Sea Water Potential Temperature
- comment :
- Diagnostic should be contributed even for models using conservative temperature as prognostic field.
- units :
- degC
- cell_methods :
- area: mean where sea time: mean
- cell_measures :
- area: areacello volume: volcello
- history :
- 2019-12-09T11:15:43Z altered by CMOR: replaced missing value flag (-9.99e+33) and corresponding data with standard missing value (1e+20).
Array Chunk Bytes 268.22 GB 19.51 GB Shape (8412, 61, 363, 360) (612, 61, 363, 360) Count 42 Tasks 14 Chunks Type float32 numpy.ndarray
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- CMIP
- branch_method :
- standard
- branch_time_in_child :
- 0.0
- branch_time_in_parent :
- 365243.0
- creation_date :
- 2019-12-09T11:15:43Z
- data_specs_version :
- 01.00.31
- experiment :
- pre-industrial control
- experiment_id :
- piControl
- external_variables :
- areacello volcello
- forcing_index :
- 1
- frequency :
- mon
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MRI.MRI-ESM2-0.piControl.none.r1i1p1f1
- grid :
- native ocean tri-polar grid with 360x363 ocean cells
- grid_label :
- gn
- history :
- 2019-12-09T11:15:43Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- 1
- institution :
- Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan
- institution_id :
- MRI
- mip_era :
- CMIP6
- nominal_resolution :
- 100 km
- parent_activity_id :
- CMIP
- parent_experiment_id :
- piControl-spinup
- parent_mip_era :
- CMIP6
- parent_source_id :
- MRI-ESM2-0
- parent_time_units :
- days since 1850-01-01
- parent_variant_label :
- r1i1p1f1
- physics_index :
- 1
- product :
- model-output
- realization_index :
- 1
- realm :
- ocean
- source :
- MRI-ESM2.0 (2017): aerosol: MASINGAR mk2r4 (TL95; 192 x 96 longitude/latitude; 80 levels; top level 0.01 hPa) atmos: MRI-AGCM3.5 (TL159; 320 x 160 longitude/latitude; 80 levels; top level 0.01 hPa) atmosChem: MRI-CCM2.1 (T42; 128 x 64 longitude/latitude; 80 levels; top level 0.01 hPa) land: HAL 1.0 landIce: none ocean: MRI.COM4.4 (tripolar primarily 0.5 deg latitude/1 deg longitude with meridional refinement down to 0.3 deg within 10 degrees north and south of the equator; 360 x 364 longitude/latitude; 61 levels; top grid cell 0-2 m) ocnBgchem: MRI.COM4.4 seaIce: MRI.COM4.4
- source_id :
- MRI-ESM2-0
- source_type :
- AOGCM AER CHEM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- Omon
- table_info :
- Creation Date:(24 July 2019) MD5:c93735846d66458966fc81f390b2d714
- title :
- MRI-ESM2-0 output prepared for CMIP6
- variable_id :
- thetao
- variant_label :
- r1i1p1f1
- license :
- CMIP6 model data produced by MRI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file). The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- cmor_version :
- 3.5.0
- tracking_id :
- hdl:21.14100/9efbe1ca-8284-4062-a82e-12ed7d9e1181