MPI-ESM-LR model output prepared for CMIP5 historical
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/tos_day_MPI-ESM-LR_historical_r1i1p1.yaml")
ds=cat.netcdf.read()
Metadata
title | MPI-ESM-LR model output prepared for CMIP5 historical |
location | /shared/cmip5/data/historical/ocean/day/day/tos/MPI-M.MPI-ESM-LR/r1i1p1 |
tags | gridded,global,model,daily |
catalog_dir | https://raw.githubusercontent.com/kpegion/COLA-DATASETS-CATALOG/gh-pages/intake-catalogs/tos_day_MPI-ESM-LR_historical_r1i1p1.yaml |
last updated | 2013-06-14 |
Dataset Contents
<xarray.Dataset> Dimensions: (bnds: 2, i: 256, j: 220, time: 38716, vertices: 4) Coordinates: * time (time) float64 1.826e+04 1.826e+04 ... 5.698e+04 5.698e+04 * j (j) int32 1 2 3 4 5 6 7 8 ... 213 214 215 216 217 218 219 220 * i (i) int32 1 2 3 4 5 6 7 8 ... 249 250 251 252 253 254 255 256 lat (j, i) float32 dask.array<chunksize=(220, 256), meta=np.ndarray> lon (j, i) float32 dask.array<chunksize=(220, 256), meta=np.ndarray> Dimensions without coordinates: bnds, vertices Data variables: time_bnds (time, bnds) float64 dask.array<chunksize=(3652, 2), meta=np.ndarray> lat_vertices (time, j, i, vertices) float32 dask.array<chunksize=(3652, 220, 256, 4), meta=np.ndarray> lon_vertices (time, j, i, vertices) float32 dask.array<chunksize=(3652, 220, 256, 4), meta=np.ndarray> tos (time, j, i) float32 dask.array<chunksize=(3652, 220, 256), meta=np.ndarray> Attributes: institution: Max Planck Institute for Meteorology institute_id: MPI-M experiment_id: historical source: MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/cosm... model_id: MPI-ESM-LR forcing: GHG Oz SD Sl Vl LU parent_experiment_id: piControl parent_experiment_rip: r1i1p1 branch_time: 10957.0 contact: cmip5-mpi-esm@dkrz.de history: Model raw output postprocessing with modelling en... references: ECHAM6: n/a; JSBACH: Raddatz et al., 2007. Will t... initialization_method: 1 physics_version: 1 tracking_id: d01db659-9de9-46bd-aac6-13f18fed830f product: output experiment: historical frequency: day creation_date: 2011-05-27T21:07:48Z Conventions: CF-1.4 project_id: CMIP5 table_id: Table day (27 April 2011) 86d1558d99b6ed1e7a886ab... title: MPI-ESM-LR model output prepared for CMIP5 histor... parent_experiment: pre-industrial control modeling_realm: ocean realization: 1 cmor_version: 2.5.9
xarray.Dataset
- bnds: 2
- i: 256
- j: 220
- time: 38716
- vertices: 4
- time(time)float641.826e+04 1.826e+04 ... 5.698e+04
- bounds :
- time_bnds
- units :
- days since 1850-1-1 00:00:00
- calendar :
- proleptic_gregorian
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([18262.5, 18263.5, 18264.5, ..., 56975.5, 56976.5, 56977.5])
- j(j)int321 2 3 4 5 6 ... 216 217 218 219 220
- units :
- 1
- long_name :
- cell index along second dimension
array([ 1, 2, 3, ..., 218, 219, 220], dtype=int32)
- i(i)int321 2 3 4 5 6 ... 252 253 254 255 256
- units :
- 1
- long_name :
- cell index along first dimension
array([ 1, 2, 3, ..., 254, 255, 256], dtype=int32)
- lat(j, i)float32dask.array<chunksize=(220, 256), meta=np.ndarray>
- standard_name :
- latitude
- long_name :
- latitude coordinate
- units :
- degrees_north
- bounds :
- lat_vertices
Array Chunk Bytes 225.28 kB 225.28 kB Shape (220, 256) (220, 256) Count 50 Tasks 1 Chunks Type float32 numpy.ndarray - lon(j, i)float32dask.array<chunksize=(220, 256), meta=np.ndarray>
- standard_name :
- longitude
- long_name :
- longitude coordinate
- units :
- degrees_east
- bounds :
- lon_vertices
Array Chunk Bytes 225.28 kB 225.28 kB Shape (220, 256) (220, 256) Count 50 Tasks 1 Chunks Type float32 numpy.ndarray
- time_bnds(time, bnds)float64dask.array<chunksize=(3652, 2), meta=np.ndarray>
Array Chunk Bytes 619.46 kB 58.45 kB Shape (38716, 2) (3653, 2) Count 33 Tasks 11 Chunks Type float64 numpy.ndarray - lat_vertices(time, j, i, vertices)float32dask.array<chunksize=(3652, 220, 256, 4), meta=np.ndarray>
- units :
- degrees_north
Array Chunk Bytes 34.89 GB 3.29 GB Shape (38716, 220, 256, 4) (3653, 220, 256, 4) Count 44 Tasks 11 Chunks Type float32 numpy.ndarray - lon_vertices(time, j, i, vertices)float32dask.array<chunksize=(3652, 220, 256, 4), meta=np.ndarray>
- units :
- degrees_east
Array Chunk Bytes 34.89 GB 3.29 GB Shape (38716, 220, 256, 4) (3653, 220, 256, 4) Count 44 Tasks 11 Chunks Type float32 numpy.ndarray - tos(time, j, i)float32dask.array<chunksize=(3652, 220, 256), meta=np.ndarray>
- standard_name :
- surface_temperature
- long_name :
- Sea Surface Temperature
- comment :
- temperature of liquid ocean. Note that the correct standard_name for this variable is ""sea_surface_temperature"", not ""surface_temperature"", but this was discovered too late to correct. To maintain consistency across CMIP5 models, the wrong standard_name will continue to be used.
- units :
- K
- cell_methods :
- time: mean
- cell_measures :
- area: areacello
- associated_files :
- baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation gridspecFile: gridspec_ocean_fx_MPI-ESM-LR_historical_r0i0p0.nc areacello: areacello_fx_MPI-ESM-LR_historical_r0i0p0.nc
Array Chunk Bytes 8.72 GB 822.95 MB Shape (38716, 220, 256) (3653, 220, 256) Count 33 Tasks 11 Chunks Type float32 numpy.ndarray
- institution :
- Max Planck Institute for Meteorology
- institute_id :
- MPI-M
- experiment_id :
- historical
- source :
- MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/cosmos/branches/releases/mpi-esm-cmip5/src/mod; atmosphere: ECHAM6 (REV: 4603), T63L47; land: JSBACH (REV: 4603); ocean: MPIOM (REV: 4603), GR15L40; sea ice: 4603; marine bgc: HAMOCC (REV: 4603);
- model_id :
- MPI-ESM-LR
- forcing :
- GHG Oz SD Sl Vl LU
- parent_experiment_id :
- piControl
- parent_experiment_rip :
- r1i1p1
- branch_time :
- 10957.0
- contact :
- cmip5-mpi-esm@dkrz.de
- history :
- Model raw output postprocessing with modelling environment (IMDI) at DKRZ: URL: http://svn-mad.zmaw.de/svn/mad/Model/IMDI/trunk, REV: 3185 2011-05-27T21:07:48Z CMOR rewrote data to comply with CF standards and CMIP5 requirements.
- references :
- ECHAM6: n/a; JSBACH: Raddatz et al., 2007. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty first century? Climate Dynamics, 29, 565-574, doi 10.1007/s00382-007-0247-8; MPIOM: Marsland et al., 2003. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5, 91-127; HAMOCC: http://www.mpimet.mpg.de/fileadmin/models/MPIOM/HAMOCC5.1_TECHNICAL_REPORT.pdf;
- initialization_method :
- 1
- physics_version :
- 1
- tracking_id :
- d01db659-9de9-46bd-aac6-13f18fed830f
- product :
- output
- experiment :
- historical
- frequency :
- day
- creation_date :
- 2011-05-27T21:07:48Z
- Conventions :
- CF-1.4
- project_id :
- CMIP5
- table_id :
- Table day (27 April 2011) 86d1558d99b6ed1e7a886ab3fd717b58
- title :
- MPI-ESM-LR model output prepared for CMIP5 historical
- parent_experiment :
- pre-industrial control
- modeling_realm :
- ocean
- realization :
- 1
- cmor_version :
- 2.5.9